化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3500-3509.DOI: 10.11949/0438-1157.20200110
收稿日期:
2020-02-03
修回日期:
2020-04-10
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
叶学民
作者简介:
李春曦(1973—),女,博士,教授,基金资助:
Chunxi LI(),Liyu ZHUANG,Zhixian SHI,Xuemin YE()
Received:
2020-02-03
Revised:
2020-04-10
Online:
2020-08-05
Published:
2020-08-05
Contact:
Xuemin YE
摘要:
针对不混溶均匀受热液体表面上蒸发液滴的动力学过程,基于润滑理论推导出了无量纲方程组。采用数值模拟方法,探究了蒸发液滴的动力学特性。结果表明,蒸发液滴的演化过程分为两个阶段:由“铺展主导”的液滴前进阶段和由“蒸发主导”的持续脉动振荡的后退阶段。液滴在低黏度比下的流动性更强,导致铺展更加迅速,黏度比的增加会导致铺展和收缩速率的降低。蒸发通过影响液滴界面的温度分布进而影响界面张力以及液滴铺展。相较于固体表面液滴蒸发出现的钉扎现象,蒸发液滴在不混溶液体表面上的铺展是去钉扎的,并且伴有液体基底的明显变形。
中图分类号:
李春曦, 庄立宇, 施智贤, 叶学民. 不混溶液体表面上蒸发液滴的动力学特性[J]. 化工学报, 2020, 71(8): 3500-3509.
Chunxi LI, Liyu ZHUANG, Zhixian SHI, Xuemin YE. Dynamics of volatile drop on surface of another immiscible liquid[J]. CIESC Journal, 2020, 71(8): 3500-3509.
有量纲参数 | 符号 | 单位 | 取值 |
---|---|---|---|
液膜最大厚度 | |||
液膜特征长度 | |||
黏度 | |||
液体密度 | |||
蒸气密度 | 1 | ||
汽化潜热 | |||
比热容 | 1 | ||
热导率 | |||
界面张力 | |||
温度 |
表1 典型参数的取值或变化范围
Table 1 Order of magnitude estimates for the relevant physical parameters
有量纲参数 | 符号 | 单位 | 取值 |
---|---|---|---|
液膜最大厚度 | |||
液膜特征长度 | |||
黏度 | |||
液体密度 | |||
蒸气密度 | 1 | ||
汽化潜热 | |||
比热容 | 1 | ||
热导率 | |||
界面张力 | |||
温度 |
无量纲参数 | 定义 | 取值 |
---|---|---|
毛细数 | ||
蒸发数 | ||
Marangoni数 | 0~1 | |
蒸气反冲数 | ||
Bond数 |
表2 无量纲参数定义及其数量级
Table 2 Representation and order of magnitude estimates of the relevant dimensionless groups
无量纲参数 | 定义 | 取值 |
---|---|---|
毛细数 | ||
蒸发数 | ||
Marangoni数 | 0~1 | |
蒸气反冲数 | ||
Bond数 |
图9 黏度比对最大液滴厚度(h2-h1)max、铺展半径xmax和接触角θ1和θ2的影响
Fig.9 The effect of the viscosity ratio on the maximal drop thickness (h2-h1)max,spreading radius xmax and contact angles θ1 and θ2
1 | Craster R V, Matar O K. On the dynamics of liquid lenses[J]. Journal of Colloid and Interface Science, 2006, 303(2): 503-516. |
2 | 韦存茜, 严杰, 唐浩, 等. 灌注液体型光滑多孔表面制备及应用[J]. 化学进展, 2016, 28(1): 9-17. |
Wei C X, Yan J, Tang H, et al. Fabrication and application of slippery liquid-infused porous surface[J]. Progress in Chemistry, 2016, 28(1): 9-17. | |
3 | Harkins W D. The Physical Chemistry of Surface Films[M]. New York: Reinhold Pub., 1952. |
4 | Foda M, Cox R G. The spreading of thin liquid films on a water-air interface[J]. Journal of Fluid Mechanics, 1980, 101(1): 33-51. |
5 | Sebilleau J. Equilibrium thickness of large liquid lenses spreading over another liquid surface[J]. Langmuir, 2013, 29(39): 12118-12128. |
6 | Nosoko T, Ohyama T, Mori Y H. Evaporation of volatile-liquid lenses floating on an immiscible-liquid surface: effects of the surface age and fluid purities in n-pentane/water system[J]. Journal of Fluid Mechanics, 1985, 161(1): 329. |
7 | Rahman M R, Mullagura H N, Kattemalalawadi B, et al. Droplet spreading on liquid–fluid interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 143-148. |
8 | Shabani R, Kumar R, Cho H J. Droplets on liquid surfaces: dual equilibrium states and their energy barrier[J]. Applied Physics Letters, 2013, 102(18): 184101. |
9 | Sun W, Yang F. Evaporation of a volatile liquid lens on the surface of an immiscible liquid[J]. Langmuir, 2016, 32(24): 6058-6067. |
10 | Liu L, Xu C, Zhao L, et al. Experimental and theoretical study of evaporation of a volatile liquid lens on an immiscible liquid surface[J]. Langmuir, 2019, 35(40): 12979-12985. |
11 | Dussaud A D, Troian S M. Dynamics of spontaneous spreading with evaporation on a deep fluid layer[J]. Physics of Fluids, 1998, 10(1): 23-38. |
12 | Buffone C. Formation, stability and hydrothermal waves in evaporating liquid lenses[J]. Soft Matter, 2019, 15(9): 1970-1978. |
13 | Shimizu Y, Mori Y H. Evaporation of single liquid drops in an immiscible liquid at elevated pressures: experimental study with n-pentane and R113 drops in water[J]. International Journal of Heat and Mass Transfer, 1988, 31(9): 1843-1851. |
14 | Sebilleau J, Lebon L, Limat L, et al. The dynamics and shapes of a viscous sheet spreading on a moving liquid bath[J]. Europhysics Letters, 2010, 92(1): 14003. |
15 | Noblin X, Buguin A, Brochard-Wyart F. Cascade of shocks in inertial liquid-liquid dewetting[J]. Physical Review Letters, 2006, 96(15): 156101. |
16 | Noblin X, Buguin A, Brochard-Wyart F. Fast dynamics of floating triple lines[J]. Langmuir, 2002, 18(24): 9350-9356. |
17 | Aveyard R, Clint J H, Nees D, et al. Size-dependent lens angles for small oil lenses on water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 146(1/2/3): 95-111. |
18 | Wilkinson K M, Bain C D, Matsubara H, et al. Wetting of surfactant solutions by alkanes[J]. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry, 2005, 6(3): 547-555. |
19 | Chen L, Jeng J, Robert M, et al. Experimental study of interfacial phase transitions in three-component surfactant systems[J]. Physical Review A, 1990, 42(8): 4716. |
20 | Style R W, Dufresne E R. Static wetting on deformable substrates, from liquids to soft solids[J]. Soft Matter, 2012, 8(27): 7177-7184. |
21 | Burton J C, Huisman F M, Alison P, et al. Experimental and numerical investigation of the equilibrium geometry of liquid lenses[J]. Langmuir, 2010, 26(19): 15316-15324. |
22 | Greco E F, Grigoriev R O. Thermocapillary migration of interfacial droplets[J]. Physics of Fluids, 2009, 21(4): 42105. |
23 | George D, Damodara S, Iqbal R, et al. Flotation of denser liquid drops on lighter liquids in non-Neumann condition: role of line tension[J]. Langmuir, 2016, 32(40): 10276-10283. |
24 | Phan C M, Allen B, Peters L B, et al. Can water float on oil?[J]. Langmuir, 2012, 28(10): 4609-4613. |
25 | Guan J H, Wells G G, Xu B, et al. Evaporation of sessile droplets on slippery liquid-infused porous surfaces (slips)[J]. Langmuir, 2015, 31(43): 11781-11789. |
26 | Brochard-Wyart F, Debrégeas G, de Gennes P G. Spreading of viscous droplets on a non viscous liquid[J]. Colloid and Polymer Science, 1996, 274(1): 70-72. |
27 | Gelderblom H, Stone H A, Snoeijer J H. Stokes flow in a drop evaporating from a liquid subphase[J]. Physics of Fluids, 2013, 25(10): 102102. |
28 | Bresme F, Quirke N. Computer simulation studies of liquid lenses at a liquid–liquid interface[J]. The Journal of Chemical Physics, 2000, 112(13): 5985-5990. |
29 | Kriegsmann J J, Miksis M J. Steady motion of a drop along a liquid interface[J]. SIAM Journal on Applied Mathematics, 2003, 64(1): 18-40. |
30 | Pujado P R, Scriven L E. Sessile lenticular configurations: translationally and rotationally symmetric lenses[J]. Journal of Colloid and Interface Science, 1972, 40(1): 82-98. |
31 | Hong J, Kim Y K, Kang K H, et al. Effects of drop size and viscosity on spreading dynamics in DC electrowetting[J]. Langmuir, 2013, 29(29): 9118-9125. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[3] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[4] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[8] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[9] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[10] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[11] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[12] | 邓璐, 巨晓洁, 张文杰, 谢锐, 汪伟, 刘壮, 潘大伟, 褚良银. 微流控法可控制备放射性壳聚糖栓塞微球[J]. 化工学报, 2023, 74(4): 1781-1794. |
[13] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[14] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[15] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||