1 |
Vörösmarty C J, Green P, Salisbury J, et al. Global water resources: vulnerability from climate change and population growth[J]. Science, 2000, 289(5477): 284-288.
|
2 |
Service R F. Desalination freshens up[J]. Science, 2006, 313(5790): 1088-1090.
|
3 |
Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2): e1500323.
|
4 |
Xu Z Y, Zhang L N, Zhao L, et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still[J]. Energy & Environmental Science, 2020, 13(3): 830-839.
|
5 |
Jiang B, Zheng J T, Qiu S, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236: 348-368.
|
6 |
Zhao F, Guo Y H, Zhou X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401.
|
7 |
Kabeel A E, EI-Agouz S A. Review of researches and developments on solar stills[J]. Desalination, 2011, 276(1/2/3): 1-12.
|
8 |
Tao P, Ni G, Song C, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041.
|
9 |
Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5: 4449.
|
10 |
Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041.
|
11 |
Ai S, Ma M, Chen Y Z, et al. Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanoparticles for water evaporation and desalination[J]. Chemical Engineering Journal, 2022, 429: 132014.
|
12 |
Li Z T, Wang C B. Multi-scale Ag/CuO photothermal materials: preparation and application in seawater desalination[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1457-1464.
|
13 |
Li C C, Zhu B, Liu Z X, et al. Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination[J]. Chemical Engineering Journal, 2022, 431: 134224.
|
14 |
Xu Y Z, Xu J L, Zhang J Y, et al. All-in-one polymer sponge composite 3D evaporators for simultaneous high-flux solar-thermal desalination and electricity generation[J]. Nano Energy, 2022, 93: 106882.
|
15 |
Ibrahim I, Seo D, McDonagh A, et al. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment[J]. Desalination, 2020, 500(5): 114853.
|
16 |
Arunkumar T, Lim H W, Denkenberger D, et al. A review on carbonized natural green flora for solar desalination[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112121.
|
17 |
梁平平, 刘帅, 李红艺, 等. PVDF-CNT自漂浮多孔微珠的制备及在高效太阳能驱动界面水蒸发中的应用[J]. 高等学校化学学报, 2021, 42(8): 2689-2693.
|
|
Liang P P, Liu S, Li H Y, et al. Self-floating porous PVDF-CNT microbeads for highly efficient solar-driven interfacial water evaporation[J]. Chemical Journal of Chinese Universities, 2021, 42(8): 2689-2693.
|
18 |
Ma X, Jia X, Yao G, et al. Umbrella evaporator for continuous solar vapor generation and salt harvesting from seawater[J]. Cell Reports Physical Science, 2022, 3(7): 100940.
|
19 |
Xu Y, Tang C, Ma J, et al. Low-tortuosity water microchannels boosting energy utilization for high water flux solar distillation[J]. Environmental Science & Technology, 2020, 54(8): 5150-5158.
|
20 |
Wang Y C, Sun X Y, Tao S Y. Rational 3D coiled morphology for efficient solar-driven desalination[J]. Environmental Science & Technology, 2020, 54(24): 16240-16248.
|
21 |
Li X Q, Lin R X, Ni G, et al. Three-dimensional artificial transpiration for efficient solar waste-water treatment[J]. National Science Review, 2017, 5(1): 70-77.
|
22 |
Wang Y C, Wang C Z, Song X J, et al. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones[J]. Journal of Materials Chemistry A, 2018, 6(21): 9874-9881.
|
23 |
Shi Y, Li R Y, Jin Y, et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018, 2(6): 1171-1186.
|
24 |
Song X Y, Song H C, Wang S, et al. Enhancement of solar vapor generation by a 3D hierarchical heat trapping structure[J]. Journal of Materials Chemistry A, 2019, 7(46): 26496-26503.
|
25 |
Yang K J, Pan T T, Dang S C, et al. Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency[J]. Nature Communications, 2022, 13(1): 6653.
|
26 |
Li X Q, Li J L, Lu J Y, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018, 2(7): 1331-1338.
|
27 |
Wang Y D, Wu X, Shao B, et al. Boosting solar steam generation by structure enhanced energy management[J]. Science Bulletin, 2020, 65(16): 1380-1388.
|
28 |
Li H R, Wang S M, Wang Z X, et al. Synchronously managed water and heat transportation for highly efficient interfacial solar desalination[J]. Desalination, 2022, 538: 115897.
|
29 |
闵骞. 道尔顿公式风速函数的改进[J]. 水文, 2005, 25(1): 37-41, 61.
|
|
Min Q. Improvement of wind speed function of Dalton's formula[J]. Hydrology, 2005, 25(1): 37-41, 61.
|
30 |
安美燕, 王洁冰, 徐震原, 等. 基于LiCl溶液太阳能界面蒸发的连续式空气取水[J]. 化工学报, 2021, 72(S1): 70-76.
|
|
An M Y, Wang J B, Xu Z Y, et al. Continuous atmospheric water harvester based on solar interfacial evaporation of LiCl solution[J]. CIESC Journal, 2021, 72(S1): 70-76.
|