化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3510-3517.DOI: 10.11949/0438-1157.20200152
收稿日期:
2020-02-18
修回日期:
2020-04-14
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
田晟
作者简介:
田晟(1969—),男,博士,副教授,基金资助:
Received:
2020-02-18
Revised:
2020-04-14
Online:
2020-08-05
Published:
2020-08-05
Contact:
Sheng TIAN
摘要:
设计了锂离子电池热管-铝板嵌合式散热模组,增大热管与电池接触面积,强化换热。利用数值模拟和正交试验层次分析研究了影响模组散热性能各因素的具体影响权重,进行参数优选。结果表明:各试验方案下电池模组的温差均控制在3℃以内,均温性能优异;各因素对最高温度的影响程度依次为:热管冷凝段对流传热系数>热管冷凝段长度>铝板厚度>热管间距;结合层次分析确定最佳参数组合为热管冷凝段对流传热系数25 W·m-2·K-1、热管长度117 mm、铝板厚度2 mm、热管间距20 mm,该方案下电池以2C倍率放电至20%模组的最高温度为41.60℃,温差为1.35℃,满足散热要求。
中图分类号:
田晟, 肖佳将. 基于正交层次法的锂离子电池热管散热模组数值模拟分析[J]. 化工学报, 2020, 71(8): 3510-3517.
Sheng TIAN, Jiajiang XIAO. Numerical simulation and analysis of lithium-ion battery heat pipe cooling module based on orthogonal analytic hierarchy process[J]. CIESC Journal, 2020, 71(8): 3510-3517.
项目 | 参数名称 | 参数值 |
---|---|---|
几何特性参数 | 宽(x)/mm | 65 |
长(y)/mm | 190 | |
厚(z)/mm | 8.8 | |
电特性参数 | 标称电压/V | 3.6 |
标称容量/(A·h) | 10 | |
常温下内阻/Ω | 5.5×10-3 | |
热物性参数 | 密度/(kg·m-3) | 1950.7 |
比热容/(J·kg-1·K-1) | 300 | |
热导率/(W·m-1·K-1) | λx=λy=1.5、λz=1 |
表1 电池单体参数[19]
Table 1 Cell parameters[19]
项目 | 参数名称 | 参数值 |
---|---|---|
几何特性参数 | 宽(x)/mm | 65 |
长(y)/mm | 190 | |
厚(z)/mm | 8.8 | |
电特性参数 | 标称电压/V | 3.6 |
标称容量/(A·h) | 10 | |
常温下内阻/Ω | 5.5×10-3 | |
热物性参数 | 密度/(kg·m-3) | 1950.7 |
比热容/(J·kg-1·K-1) | 300 | |
热导率/(W·m-1·K-1) | λx=λy=1.5、λz=1 |
水平 | 因素 | |||
---|---|---|---|---|
A /(W·m-2·K-1) | B/mm | C | D /mm | |
1 | 5 | 2.0 | 0.4 | 30 |
2 | 15 | 2.5 | 0.6 | 20 |
3 | 25 | 3.0 | 0.8 | 10 |
表2 正交试验因素水平
Table 2 Orthogonal experiment factors and levels
水平 | 因素 | |||
---|---|---|---|---|
A /(W·m-2·K-1) | B/mm | C | D /mm | |
1 | 5 | 2.0 | 0.4 | 30 |
2 | 15 | 2.5 | 0.6 | 20 |
3 | 25 | 3.0 | 0.8 | 10 |
试验编号 | 试验方案 | 试验指标 | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | Tmax/℃ | Tmin/℃ | ΔT/℃ | |
1 | 1 | 1 | 1 | 1 | 53.10 | 50.18 | 2.92 |
2 | 1 | 2 | 2 | 2 | 49.48 | 47.12 | 2.36 |
3 | 1 | 3 | 3 | 3 | 47.16 | 45.20 | 1.96 |
4 | 2 | 1 | 2 | 3 | 47.74 | 45.74 | 2.00 |
5 | 2 | 2 | 3 | 1 | 44.02 | 42.42 | 1.60 |
6 | 2 | 3 | 1 | 2 | 45.80 | 44.03 | 1.77 |
7 | 3 | 1 | 3 | 2 | 41.60 | 40.25 | 1.35 |
8 | 3 | 2 | 1 | 3 | 45.16 | 43.51 | 1.65 |
9 | 3 | 3 | 2 | 1 | 41.62 | 40.43 | 1.19 |
表3 正交试验方案及结果
Table 3 Orthogonal experiment schemes and results
试验编号 | 试验方案 | 试验指标 | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | Tmax/℃ | Tmin/℃ | ΔT/℃ | |
1 | 1 | 1 | 1 | 1 | 53.10 | 50.18 | 2.92 |
2 | 1 | 2 | 2 | 2 | 49.48 | 47.12 | 2.36 |
3 | 1 | 3 | 3 | 3 | 47.16 | 45.20 | 1.96 |
4 | 2 | 1 | 2 | 3 | 47.74 | 45.74 | 2.00 |
5 | 2 | 2 | 3 | 1 | 44.02 | 42.42 | 1.60 |
6 | 2 | 3 | 1 | 2 | 45.80 | 44.03 | 1.77 |
7 | 3 | 1 | 3 | 2 | 41.60 | 40.25 | 1.35 |
8 | 3 | 2 | 1 | 3 | 45.16 | 43.51 | 1.65 |
9 | 3 | 3 | 2 | 1 | 41.62 | 40.43 | 1.19 |
Ki1 | Ki2 | Ki3 | ki1 | ki2 | ki3 | Ri |
---|---|---|---|---|---|---|
149.74 | 137.56 | 128.38 | 49.91 | 45.85 | 42.79 | 7.12 |
142.44 | 138.66 | 134.58 | 47.48 | 46.22 | 44.86 | 2.62 |
144.06 | 138.84 | 132.78 | 48.02 | 46.28 | 44.26 | 3.76 |
138.74 | 136.88 | 140.06 | 46.25 | 45.63 | 46.69 | 1.06 |
表4 电池模组最高温度Tmax极差分析
Table 4 Analysis of Tmax range of battery module
Ki1 | Ki2 | Ki3 | ki1 | ki2 | ki3 | Ri |
---|---|---|---|---|---|---|
149.74 | 137.56 | 128.38 | 49.91 | 45.85 | 42.79 | 7.12 |
142.44 | 138.66 | 134.58 | 47.48 | 46.22 | 44.86 | 2.62 |
144.06 | 138.84 | 132.78 | 48.02 | 46.28 | 44.26 | 3.76 |
138.74 | 136.88 | 140.06 | 46.25 | 45.63 | 46.69 | 1.06 |
试验编号 | A | B | C | D |
---|---|---|---|---|
10 | 3 | 1 | 3 | 2 |
11 | 3 | 2 | 3 | 2 |
12 | 3 | 3 | 3 | 2 |
表5 因素B优化方案
Table 5 Optimization schemes of factor B
试验编号 | A | B | C | D |
---|---|---|---|---|
10 | 3 | 1 | 3 | 2 |
11 | 3 | 2 | 3 | 2 |
12 | 3 | 3 | 3 | 2 |
1 | 李军求, 吴朴恩, 张承宁. 电动汽车动力电池热管理技术的研究与实现[J]. 汽车工程, 2016, 38(1): 22-27+35. |
Li J Q, Wu P E, Zhang C N. Study and implementation of thermal management technology for the power batteries of electric vehicle[J]. Automotive Engineering, 2016, 38(1): 22-27+35. | |
2 | Chen K, Wu W X, Yuan F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167: 781-790. |
3 | Bahiraei F, Farta A, Nazrib G A. Electrochemical-thermal modeling to evaluate active thermal management of a lithium-ion battery module[J]. Electrochimica Acta, 2017, 254: 59-71. |
4 | 谈秋宏. 电动汽车用锂离子电池的热特性研究[D]. 北京: 北京交通大学, 2018. |
Tan Q H. Thermal performance research on the lithium-ion batteries of electric vehicle[D]. Beijing: Beijing Jiaotong University, 2018. | |
5 | 张剑波, 卢兰光, 李哲. 车用动力电池系统的关键技术与学科前沿[J]. 汽车安全与节能学报, 2012, 3(2): 87-104. |
Zhang J B, Lu L G, Li Z. Key technologies and fundamental academic issues for traction battery systems[J]. Journal of Automotive Safety and Energy, 2012, 3(2): 87-104. | |
6 | Siddique A R M, Mahmud S, Heyst B V. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations[J]. Journal of Power Sources, 2018, 401: 224-237. |
7 | Li Y B, Zhou Z F, Wu W T. Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate[J]. Applied Thermal Engineering, 2019, 147: 829-840. |
8 | Kim G H, Gonder J, Lustbader J, et al. Thermal management of batteries in advanced vehicles using phase-change materials[J]. The World Electric Vehicle Journal, 2008, 2(2): 134-147. |
9 | 蔡飞龙, 许思传, 常国峰. 纯电动汽车用锂离子电池热管理综述[J]. 电源技术, 2012, 36(9): 1410-1413. |
Cai F L, Xu S C, Chang G F. Thermal management techniques of lithium-ion battery pack for electric vehicles [J]. Chinese Journal of Power Sources, 2012, 36(9): 1410-1413. | |
10 | 杨世春, 周思达, 张玉龙, 等. 车用锂离子电池直冷热管理系统用冷媒研究进展[J]. 北京航空航天大学学报, 2019, 45(11): 2123-2132. |
Yang S C, Zhou S D, Zhang Y L, et al. Review on refrigerant for direct-cooling thermal management system of lithium-ion battery for electric vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2123-2132. | |
11 | Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149: 192-212. |
12 | 王建, 郭航, 叶芳, 等. 热管散热装置对车用锂离子电池组内温度分布影响数值模拟[J]. 化工学报, 2016, 67: 340-347. |
Wang J, Guo H, Ye F, et al. Numerical simulation of effect of heat pipe cooling device on temperature distribution in lithium-ion battery pack of vehicle[J]. CIESC Journal, 2016, 67: 340-347. | |
13 | Tran T H, Harmand S, Desmet B, et al. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery[J]. Applied Thermal Engineering, 2014, 63: 551-558. |
14 | Wu M S, Liu K H, Wang Y Y, et al. Heat dissipation design for lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 160-166. |
15 | 张国庆, 吴忠杰, 饶中浩, 等. 动力电池热管冷却试验效果[J]. 化工进展, 2009, 28(7): 1165-1168+1174. |
Zhang G Q, Wu Z J, Rao Z H, et al. Experimental investigation on heat pipe cooling effect for power battery[J]. Chemical Industry and Engineering Progress, 2009, 28(7): 1165-1168+1174. | |
16 | Murashko K, Pyrhönen J, Laurila L. Optimization of the passive thermal control system of a lithium-ion battery with heat pipes embedded in an aluminum plate[C]//15th European Conference on Power Electronics and Applications (EPE). Lille, 2013. |
17 | 甘云华, 王建钦, 梁嘉林. 基于热管的圆柱形电池包冷却性能分析[J]. 化工学报, 2018, 69(5): 1964-1971. |
Gan Y H, Wang J Q, Liang J L. Cooling performance of cylindrical battery pack based on thermal management system with heat pipe[J]. CIESC Journal, 2018, 69(5): 1964-1971. | |
18 | Feng L Y, Zhou S, Li Y C, et al. Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling[J]. Journal of Energy Storage, 2018, 16: 84-92. |
19 | 胡春娇. 纯电动汽车锂离子电池模块设计及热特性分析[D]. 长沙: 湖南大学, 2016. |
Hu C J. Battery module design and thermal characteristics analysis for the pure electric vehicle[D]. Changsha: Hunan University, 2016. | |
20 | Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery system[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
21 | 李哲, 韩雪冰, 卢兰光, 等. 动力型磷酸铁锂电池的温度特性[J]. 机械工程学报, 2011, 47(18): 115-120. |
Li Z, Han X B, Lu L G, et al. Temperature characteristics of power LiFePO4 batteries[J]. Journal of Mechanical Engineering, 2011, 47(18): 115-120. | |
22 | Zhang S J, Zhao R, Liu J, et al. Investigation on a hydrogel based passive thermal management system for lithium ion batteries[J]. Energy, 2014, 68: 854-861. |
23 | 谢小敏, 顾伯勤. 热管换热器模拟重要参数的选择[J]. 轻工机械, 2013, 31(3): 23-27. |
Xie X M, Gu B Q. Calculation of certain important parameters in simulation of heat pipe exchanger[J]. Light Industry Machinery, 2013, 31(3): 23-27. | |
24 | 闵小滕, 唐志国, 高钦, 等. 基于微小通道波形扁管的圆柱电池液冷模组散热特性[J]. 浙江大学学报(工学版), 2019, 53(3): 463-469. |
Min X T, Tang Z G, Gao Q, et al. Heat dissipation characteristic of liquid cooling cylindrical battery module based on mini-channel wavy tube[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(3): 463-469. | |
25 | E J Q, Han D D, Qiu A, et al. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system[J]. Applied Thermal Engineering, 2018, 132: 508-520. |
26 | 郭穗勋, 黄榕波. 正交试验层次分析法[J]. 大学数学, 2004, (1): 114-117. |
Guo S X, Huang R B. The AHP method of orthogonal trial[J]. College Mathematics, 2004, (1): 114-117. | |
27 | Wang L, Sharkh S, Chipperfield A, et al. Dispatch of vehicle-to-grid battery storage using an analytic hierarchy process[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 2952-2965. |
28 | 冯青松, 孙魁, 罗信伟, 等. 现代有轨电车短枕埋入式轨道路基优化分析[J]. 铁道工程学报, 2018, 35(1): 23-28. |
Feng Q S, Sun K, Luo X W, et al. Optimization analysis of short sleeper embedded track subgrade of modern tram[J]. 2018, 35(1): 23-28. | |
29 | 郭阳东, 李玉芳, 张文浩, 等. 典型工况下动力电池温度特性研究[J]. 电源技术, 2018, 42(8): 1143-1147. |
Guo Y D, Li Y F, Zhang W H, et al. Research on temperature performance of power battery under typical condition[J]. Chinese Journal of Power Sources, 2018, 42(8): 1143-1147. | |
30 | Wei A B, Qu J, Qiu H H, et al. Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management[J]. International Journal of Heat and Mass Transfer, 2019, 135: 746-760. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 蒋祎璠, 刘蕾, 赵耀, 代彦军. UVLED光学元件液冷散热系统性能研究[J]. 化工学报, 2023, 74(S1): 154-160. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 申利梅, 胡博兴, 谢雨霏, 曾伟豪, 张晓屿. 超薄平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(S1): 198-205. |
[7] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[10] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[11] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[12] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[13] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[14] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[15] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||