化工学报 ›› 2021, Vol. 72 ›› Issue (2): 1067-1077.DOI: 10.11949/0438-1157.20200842
收稿日期:
2020-06-29
修回日期:
2020-07-21
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
刘明言
作者简介:
何吉喆(1994—),男,硕士研究生,基金资助:
HE Jizhe1(),LIU Mingyan1,2(
),XU Yangshuhan1,3
Received:
2020-06-29
Revised:
2020-07-21
Online:
2021-02-05
Published:
2021-02-05
Contact:
LIU Mingyan
摘要:
以环氧大豆油(ESO)为主要原料,四亚乙基五胺为固化剂,在碳钢基底表面制备了环氧豆油树脂(ESOR)涂层。利用场发射扫描电镜、傅里叶红外变化光谱仪、纳米压痕仪、热重分析仪、接触角测量仪、电化学阻抗谱等技术对ESOR涂层的性能进行了表征。结果发现,原料中ESO的含量有助于提高ESOR涂层的耐水性;而当原料中ESO的含量逐渐增加时,ESOR涂层的硬度、弹性模量和耐蚀性都会随之增强;根据拟合的等效电路,ESO与四亚乙基五胺的摩尔比为2的ESOR涂层的涂层电阻Rc能达到8.22×1011 Ω·cm2,电荷转移电阻Rct能达到1.32
中图分类号:
何吉喆, 刘明言, 徐杨书函. 环氧豆油树脂涂层的防腐性能研究[J]. 化工学报, 2021, 72(2): 1067-1077.
HE Jizhe, LIU Mingyan, XU Yangshuhan. Study on anticorrosive properties of epoxy soybean oil resin coating[J]. CIESC Journal, 2021, 72(2): 1067-1077.
涂层 | Qc/ (s-n/(cm2·Ω)) | Rc/ (Ω·cm2) | Qdl/ (s-n/(cm2·Ω)) | Rct/ (Ω·cm2) |
---|---|---|---|---|
E0.5-0d | 2.18 | 5.60 | — | — |
E0.5-1d | 3.34 | 9.87 | — | 1.31 |
E0.5-15d | 1.21 | 1.12 | 7.43 | 4.11 |
E0.5-30d | 7.76 | 1.67 | 4.88 | 1.88 |
E1.0-0d | 2.03 | 4.81 | — | — |
E1.0-1d | 2.80 | 1.34 | — | — |
E1.0-15d | 9.61 | 2.11 | 3.15 | 1.57 |
E1.0-30d | 3.21 | 5.13 | 4.33 | 4.57 |
E1.5-0d | 2.07 | 5.43 | — | — |
E1.5-1d | 2.41 | 1.78 | — | — |
E1.5-15d | 8.14 | 2.86 | 3.09 | 7.66 |
E1.5-30d | 4.65 | 1.23 | 4.09 | 1.36 |
E2.0-0d | 1.77 | 8.22 | — | — |
E2.0-1d | 1.76 | 5.57 | — | — |
E2.0-15d | 5.13 | 3.09 | 1.43 | 1.32 |
E2.0-30d | 1.46 | 2.57 | 2.11 | 3.17 |
表1 ESOR涂层的等效电路模拟数据
Table 1 Simulation data of equivalent circuits of ESOR coatings
涂层 | Qc/ (s-n/(cm2·Ω)) | Rc/ (Ω·cm2) | Qdl/ (s-n/(cm2·Ω)) | Rct/ (Ω·cm2) |
---|---|---|---|---|
E0.5-0d | 2.18 | 5.60 | — | — |
E0.5-1d | 3.34 | 9.87 | — | 1.31 |
E0.5-15d | 1.21 | 1.12 | 7.43 | 4.11 |
E0.5-30d | 7.76 | 1.67 | 4.88 | 1.88 |
E1.0-0d | 2.03 | 4.81 | — | — |
E1.0-1d | 2.80 | 1.34 | — | — |
E1.0-15d | 9.61 | 2.11 | 3.15 | 1.57 |
E1.0-30d | 3.21 | 5.13 | 4.33 | 4.57 |
E1.5-0d | 2.07 | 5.43 | — | — |
E1.5-1d | 2.41 | 1.78 | — | — |
E1.5-15d | 8.14 | 2.86 | 3.09 | 7.66 |
E1.5-30d | 4.65 | 1.23 | 4.09 | 1.36 |
E2.0-0d | 1.77 | 8.22 | — | — |
E2.0-1d | 1.76 | 5.57 | — | — |
E2.0-15d | 5.13 | 3.09 | 1.43 | 1.32 |
E2.0-30d | 1.46 | 2.57 | 2.11 | 3.17 |
1 | Choi M S, Rehman S U, Kim H, et al. Migration of epoxidized soybean oil from polyvinyl chloride/polyvinylidene chloride food packaging wraps into food simulants[J]. Environmental Science and Pollution Research, 2018, 25(5): 5033-5039. |
2 | Kong X, Narine S S. Physical properties of sequential interpenetrating polymer networks produced from canola oil-based polyurethane and poly (methyl methacrylate)[J]. Biomacromolecules, 2008, 9(5): 1424-1433. |
3 | Vu C M, Nguyen V H, Baćh Q H. Phosphorous-jointed epoxidized soybean oil and rice husk-based silica as the novel additives for improvement mechanical and flame retardant of epoxy resin[J]. Journal of Fire Sciences, 2020, 38(1): 3-27. |
4 | 何飞强, 傅和青, 周威. 环氧大豆油和硅氧烷改性水性聚氨酯胶黏剂[J]. 化工学报, 2014, 65(11): 4599-4606. |
He F Q, Fu H Q, Zhou W. Waterborne polyurethane adhesive modifieel by epoxy oil soybean and 3-aminopropyltriethoxysilane [J]. CIESC Journal, 2014, 65(11): 4599-4606. | |
5 | Heinen M, Gerbase A E, Petzhold C L. Vegetable oil-based rigid polyurethanes and phosphorylated flame- retardants derived from epoxydized soybean oil[J]. Polymer Degradation and Stability, 2014, 108: 76-86. |
6 | Li X, Nie X, Chen J, et al. Synthesis and application of a novel epoxidized plasticizer based on cardanol for poly (vinyl chloride) [J]. Journal of Renewable Materials, 2017, 5(2): 154-164. |
7 | 张继昌, 张艳维, 朱心奇, 等. 绿色增塑剂环氧大豆油的合成与表征[J]. 塑料科技, 2012, 40(8): 93-95. |
Zhang J C, Zhang Y W, Zhu X Q, et al. Study on synthesis and characterization of green plasticizer epoxidized soybean oil[J]. Plastics Science and Technology, 2012, 40(8): 93-95. | |
8 | 龚新怀, 辛梅华, 李明春, 等. 环氧大豆油增塑聚乳酸/茶渣生物质复合材料的制备与性能研究[J]. 塑料科技, 2019, 47(4): 54-58 |
Gong X H, Xin M H, Li M C, et al. Study on preparation and properties of PLA/TW biocomposites plasticized with ESO[J]. Plastics Science and Technology, 2019, 47(4): 54-58. | |
9 | Karmalm P, Hjertberg T, Jansson A, et al. Network formation by epoxidised soybean oil in plastisol poly(vinyl chloride) [J]. Polymer Degradation and Stability, 2009, 94(11): 1986-1990. |
10 | Hutzler B W, Machado Lugão A B L D B, et al. Properties of irradiated PVC plasticized with non-endocrine disruptor[J]. Radiation Physics and Chemistry, 2000, 57(3/4/5/6): 381-384. |
11 | Özşeker A, Karadeniz K, Ylmaz R F. Intrinsically flame retardant polyurethane prepared with epoxidized soybean oil and vinylphosphonic acid[J]. Croatica Chemica Acta, 2018, 91(4): 589-597. |
12 | Meng X, Bocharova V, Tekinalp H, et al. Toughening of nanocelluose/PLA composites via bio-epoxy interaction: mechanistic study[J]. Materials & Design, 2018, 139(5): 188-197. |
13 | Qi M, Xu Y, Rao W H, et al. Epoxidized soybean oil cured with tannic acid for fully bio-based epoxy resin[J]. RSC Advances, 2018, 8(47): 26948-26958. |
14 | Zhao S J, Wang Z, Kang H J, et al. Fully bio-based soybean adhesive in situ cross-linked by interactive network skeleton from plant oil-anchored fiber[J]. Industrial Crops and Products, 2018, 122: 366-374. |
15 | Pradhan S, Mohanty S, Nayak S K. In-situ aerobic biodegradation study of epoxy-acrylate film in compost soil environment[J]. Journal of Polymers and the Environment, 2018, 26(3): 1133-1144. |
16 | Wu B, Wang Y, Chen S, et al. Bis-uracil based high efficient heat stabilizers used in super transparent soft poly (vinyl chloride) [J]. Polymer Degradation and Stability, 2018, 149: 143-151. |
17 | Jin H, Zhang Y, Wang C, et al. Thermal, mechanical, and morphological properties of soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs)[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(2): 773-781. |
18 | 鲍俊翔, 谢晖, 黄莉, 等. UV固化生物基改性柔性环氧丙烯酸酯的合成及性能[J]. 涂料工业, 2020, 50(2): 7-13. |
Bao J X, Xie H, Huang L, et al. Synthesis and performance of UV-curing bio-based modified flexible epoxy acrylates[J]. Paint & Coating industry, 2020, 50(2): 7-13. | |
19 | Yadav S K, Hu F, la Scala J, et al. Toughening anhydride-cured epoxy resins using fatty alkyl-anhydride-grafted epoxidized soybean oil[J]. ACS omega, 2018, 3(3): 2641-2651. |
20 | Hwang H S, Erhan S Z. Synthetic lubricant basestocks from epoxidized soybean oil and Guerbet alcohols[J]. Industrial Crops and Products, 2006, 23(3): 311-317. |
21 | Wang W, Xue L, Zhang T, et al. The influence of MgO/ZrO2/Al2O3 refractories on the refining process of Ti-containing steel based on kinetic study[J]. Ceramics International, 2020, 46(11): 17561-17568 |
22 | Song G L, Atrens A. Corrosion mechanisms of magnesium alloys [J]. Advanced Engineering Materials, 1999, 1(1): 11-33. |
23 | Song G. Recent progress in corrosion and protection of magnesium alloys[J]. Advanced Engineering Materials, 2005, 7(7): 563-586. |
24 | Popoola L T, Grema A S, Latinwo G K, et al. Corrosion problems during oil and gas production and its mitigation[J]. International Journal of Industrial Chemistry, 2013, 4(1): 1-15. |
25 | Minhaj A, Saini P A, Quraishi M A, et al. A study of natural compounds as corrosion inhibitors for industrial cooling systems[J]. Corrosion Prevention and Control, 1999, 46(2): 32-38. |
26 | Chen X H, Chen C S, Xiao H N, et al. Corrosion behavior of carbon nanotubes-Ni composite coating[J]. Surface and Coatings Technology, 2005, 191(2/3): 351-356. |
27 | Sato Y. Corrosion protection by organic coatings[J]. Corrosion Engineering, 1978, 27(7): 356-366. |
28 | Liu Y, Zhao Q. Study of electroless Ni-Cu-P coatings and their anti-corrosion properties[J]. Applied Surface Science, 2004, 228(1/2/3/4): 57-62. |
29 | Jagielski J, Khanna A S, Kucinski J, et al. Effect of chromium nitride coating on the corrosion and wear resistance of stainless steel[J]. Applied Surface Science, 2000, 156(1/2/3/4): 47-64. |
30 | Wang Z, Liu L M. Corrosion resistant performances of Al-rich epoxy resin based paint on arc-sprayed Al coating[J]. Materials and Corrosion, 2010, 61(2): 152-156. |
31 | Mo M, Zhao W, Chen Z, et al. Corrosion inhibition of functional graphene reinforced polyurethane nanocomposite coatings with regular textures[J]. RSC Advances, 2016, 6(10): 7780-7790. |
32 | Rossi S, Chini F, Straffelini G, et al. Corrosion protection properties of electroless Nickel/PTFE, Phosphate/MoS2 and Bronze/PTFE coatings applied to improve the wear resistance of carbon steel[J]. Surface and Coatings Technology, 2003, 173(2/3): 235-242. |
33 | Prakash A, Ravindra G, Hyeon J, et al. Controlled hydroxyl functionality of soybean oil-based polyols for polyurethane coatings with improved anticorrosion properties[J]. Macromolecular Research, 2018, 26(8): 696-703. |
34 | Ammar S, Iling A, Ramesh K, et al. Development of fully organic coating system modified with epoxidized soybean oil with superior corrosion protection performance[J]. Progress in Organic Coatings, 2020, 140: 105523. |
35 | Lingner M, Heinen M, Silva R C, et al. Reinforcing anticorrosive properties of biobased organic coatings through chemical functionalization with amino and aromatic groups[J]. Progress in Organic Coatings, 2018, 125: 372-383. |
36 | Ibrahim M S, Mohamed H A, Kandile N G, et al. Electron beam processed plasticized epoxy coatings for surface protection[J]. Materials Chemistry and Physics, 2011, 130(1/2): 237-242 |
37 | 徐杨书函, 董强, 刘求安, 等. 一种用于金属表面防腐蚀的环氧豆油树脂涂层的制备方法: 201910476127. 3 [P]. 2019-08-16. |
Xu Y S H, Dong Q, Liu Q A, et al. A preparation method of epoxy soybean oil resin coating for anticorrosion of metal surface: 201910476127. 3 [P]. 2019-08-16. | |
38 | 谢存毅. 纳米压痕技术在材料科学中的应用[J]. 物理, 2001, (7): 47-50. |
Xie C Y. Application of nano-indentation technology in materials science[J]. Physics, 2001, (7): 47-50. | |
39 | 路富有. 聚苯胺/丙烯酸聚氨酯树脂涂层的制备及性能研究[D]. 天津: 天津大学, 2017. |
Lu F Y. Preparation and properties of polyaniline/acrylic polyurethane resin coating[D]. Tianjin: Tianjin University, 2017. | |
40 | 曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2004: 156-160. |
Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2004: 156-160. | |
41 | Darowicki K, Szociński M, Zieliński A. Assessment of organic coating degradation via local impedance imaging[J]. Electrochimica Acta, 2010, 55(11): 3741-3748. |
42 | Olivier M G, Poelman M, Demuynck M, et al. EIS evaluation of the filiform corrosion of aluminium coated by a cataphoretic paint[J]. Progress in Organic Coatings, 2005, 52(4): 263-270. |
43 | Lu F, Song B, He P, et al. Electrochemical impedance spectroscopy (EIS) study on the degradation of acrylic polyurethane coatings[J]. RSC Advances, 2017, 7(23): 13742-13748. |
44 | Walter G. The application of impedance spectroscopy to study the uptake of sodium chloride solution in painted metals [J]. Corrosion Science, 1991, 32(10): 1041-1058. |
45 | Wei H, Ding D, Wei S, et al. Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites[J]. Journal of Materials Chemistry A, 2013, 1(36): 10805-10813. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 赵婧, 顾程文, 蹇锡高, 翁志焕. 厚朴酚基环氧树脂防腐涂层的制备及性能评价[J]. 化工学报, 2023, 74(7): 3010-3017. |
[5] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[6] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[7] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[8] | 魏小兰, 戚文杰, 丁静, 陆建峰, 王维龙, 刘书乐. 氯化物熔盐中铬的价态对镍基合金腐蚀性的影响[J]. 化工学报, 2022, 73(7): 3182-3192. |
[9] | 苏国庆, 张建文, 李彦. 蝶阀后管线腐蚀发生与发展机制研究[J]. 化工学报, 2022, 73(12): 5504-5516. |
[10] | 张经伟, 刘永阳, 刘东, 邵国栋, 李元鲁, 刘舫辰, 杜文静. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481. |
[11] | 梁旭鸣, 沈永超, 卫东, 郭倩, 高志. 基于直流内阻和交流阻抗特性的铝空气电池输出特性分析[J]. 化工学报, 2021, 72(8): 4361-4370. |
[12] | 周通, 陈晶晶, 涂春朝, 吉晓燕, 陆小华, 王昌松. 管道内多巴胺超疏水涂层的制备[J]. 化工学报, 2021, 72(7): 3814-3822. |
[13] | 李海燕, 刘欢, 张秀菊, 王阁义, 周巧燕, 陈同舟, 姚洪. HVOF喷涂用于提高锅炉换热面耐磨损耐腐蚀性能综述[J]. 化工学报, 2021, 72(4): 1833-1846. |
[14] | 谭卓伟, 杨留洋, 王振波, 豆肖辉, 张大磊, 张明阳, 金有海. 高剪切力流场下X80管线钢局部腐蚀深坑诱导局部湍流交互机理研究[J]. 化工学报, 2021, 72(4): 2203-2212. |
[15] | 汪怀远, 林丹, 张曦光, 袁思成. 水性超疏水涂层的制备、调控与应用的研究进展[J]. 化工学报, 2021, 72(2): 669-680. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 246
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 693
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||