1 |
Shi Q A, Hou D J, Chung K H, et al. Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2010, 24(4): 2545-2553.
|
2 |
Martínez-Palou R, de Lourdes Mosqueira M, Zapata-Rendón B, et al. Transportation of heavy and extra-heavy crude oil by pipeline: a review[J]. Journal of Petroleum Science and Engineering, 2011, 75(3/4): 274-282.
|
3 |
Hart A. A review of technologies for transporting heavy crude oil and bitumen via pipelines[J]. Journal of Petroleum Exploration and Production Technology, 2014, 4(3): 327-336.
|
4 |
郑万鹏, 高小永, 朱桂瑶, 等. 原油作业过程优化的研究进展[J]. 化工学报, 2021, 72(11): 5481-5501.
|
|
Zheng W P, Gao X Y, Zhu G Y, et al. Research progress on crude oil operation optimization[J]. CIESC Journal, 2021, 72(11): 5481-5501.
|
5 |
孙盈盈, 周明辉, 黄佳, 等. 稠油地下改质开采技术及发展趋势[J]. 化工学报, 2020, 71(9): 4141-4151.
|
|
Sun Y Y, Zhou M H, Huang J, et al. Research progress and development tendency of heavy oil in situ upgrading technologies[J]. CIESC Journal, 2020, 71(9): 4141-4151.
|
6 |
Wu X, Zhang Y C, Liu M H, et al. Preventing crude oil adhesion using fully waterborne coatings[J]. AIChE Journal, 2019, 65(5): e16569.
|
7 |
Schmidt D L, Coburn C E, DeKoven B M, et al. Water-based non-stick hydrophobic coatings[J]. Nature, 1994, 368(6466): 39-41.
|
8 |
Lu Y, Sathasivam S, Song J L, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347: 1132-1135.
|
9 |
Zhong X M, Wyman I, Yang H, et al. Preparation of robust anti-smudge coatings via electrophoretic deposition[J]. Chemical Engineering Journal, 2016, 302: 744-751.
|
10 |
Liu M J, Wang S T, Jiang L. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2: 17036.
|
11 |
Wang D H, Sun Q Q, Hokkanen M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59.
|
12 |
Tuteja A, Choi W, Ma M L, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622.
|
13 |
Deng X, Mammen L, Butt H J, et al. Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335(6064): 67-70.
|
14 |
Liu T Y, Kim C J. Turning a surface superrepellent even to completely wetting liquids[J]. Science, 2014, 346(6213): 1096-1100.
|
15 |
Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447.
|
16 |
Chen R Z, Zhang Y S, Xie Q Y, et al. Transparent polymer-ceramic hybrid antifouling coating with superior mechanical properties[J]. Advanced Functional Materials, 2021, 31(19): 2011145.
|
17 |
Liu J, Zhu C Q, Liu K, et al. Distinct ice patterns on solid surfaces with various wettabilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43): 11285-11290.
|
18 |
Epstein A K, Wong T S, Belisle R A, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33): 13182-13187.
|
19 |
Tian X L, Verho T, Ras R H A. Moving superhydrophobic surfaces toward real-world applications[J]. Science, 2016, 352(6282): 142-143.
|
20 |
Dhyani A, Wang J, Halvey A K, et al. Design and applications of surfaces that control the accretion of matter[J]. Science, 2021, 373(6552): eaba5010.
|
21 |
Zhang L S, Zhou A G, Sun B R, et al. Functional and versatile superhydrophobic coatings via stoichiometric silanization[J]. Nature Communications, 2021, 12: 982.
|
22 |
Meng X F, Wang M M, Heng L P, et al. Underwater mechanically robust oil-repellent materials: combining conflicting properties using a heterostructure[J]. Advanced Materials, 2018, 30(11): 1706634.
|
23 |
Zhang Z Q, Yu D F, Xu X B, et al. Versatile snail-inspired superamphiphobic coatings with repeatable adhesion and recyclability[J]. Chemical Engineering Science, 2021, 230: 116182.
|
24 |
Buddingh J V, Hozumi A, Liu G J. Liquid and liquid-like surfaces/coatings that readily slide fluids[J]. Progress in Polymer Science, 2021, 123: 101468.
|
25 |
Cui J X, Daniel D, Grinthal A, et al. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing[J]. Nature Materials, 2015, 14(8): 790-795.
|
26 |
Xu X B, Zhang Y C, Wen J X, et al. Large-area, daily, on-site-applicable antiadhesion coatings formed via ambient self-crosslinking[J]. Chemical Engineering Journal, 2022, 450: 138156.
|
27 |
Huang J J, Yu D F, Xu X B, et al. Ultra-high flux and efficient oil-water separation via polymer-based electrophoretic deposition[J]. Chemical Engineering Journal, 2019, 371: 575-582.
|
28 |
Wu X, Liu M H, Zhong X M, et al. Smooth water-based antismudge coatings for various substrates[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2605-2613.
|
29 |
Zhao X X, Khatir B, Mirshahidi K, et al. Macroscopic evidence of the liquidlike nature of nanoscale polydimethylsiloxane brushes[J]. ACS Nano, 2021, 15(8): 13559-13567.
|
30 |
Vahabi H, Vallabhuneni S, Hedayati M, et al. Designing non-textured, all-solid, slippery hydrophilic surfaces[J]. Matter, 2022, 5(12): 4502-4512.
|
31 |
Shao Y J, Zhu L Q, Li W P, et al. Anti-asphalt properties of PPS/PTFE composite coatings at high temperature[J]. Surface Engineering, 2018, 34(11): 877-883.
|
32 |
夏德宏, 周军, 邬婕, 等. 卡森流体管流的减阻机理及减阻率计算[J]. 北京科技大学学报, 2002, 24(4): 452-454.
|
|
Xia D H, Zhou J, Wu J, et al. Drag reduction mechanism in pipe flow of casson fluid and calculation of drag reduction rate[J]. Journal of University of Science and Technology Beijing, 2002, 24(4): 452-454.
|
33 |
Hénot M, Drockenmuller É, Léger L, et al. Friction of polymers: from PDMS melts to PDMS elastomers[J]. ACS Macro Letters, 2018, 7(1): 112-115.
|
34 |
戴干策, 陈敏恒. 化工流体力学[M]. 2版. 北京: 化学工业出版社, 2005.
|
|
Dai G C, Chen M H. Chemical Fluid Mechanics[M]. 2nd ed. Beijing: Chemical Industry Press, 2005.
|
35 |
Cheng J T, Giordano N. Fluid flow through nanometer-scale channels[J]. Physical Review E, 2002, 65(3): 031206.
|
36 |
Chen L W, Feng Q X, Huang S L, et al. A grafted-liquid lubrication strategy to enhance membrane permeability in viscous liquid separation[J]. Journal of Membrane Science, 2020, 610: 118240.
|