化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3814-3822.DOI: 10.11949/0438-1157.20201943
周通1(),陈晶晶1,2,涂春朝1,吉晓燕2,陆小华1,王昌松1()
收稿日期:
2020-12-31
修回日期:
2021-05-06
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
王昌松
作者简介:
周通(1994—),男,硕士研究生,基金资助:
ZHOU Tong1(),CHEN Jingjing1,2,TU Chunzhao1,JI Xiaoyan2,LU Xiaohua1,WANG Changsong1()
Received:
2020-12-31
Revised:
2021-05-06
Online:
2021-07-05
Published:
2021-07-05
Contact:
WANG Changsong
摘要:
超疏水涂层在表面自清洁、流体减阻、防雾防冰冻和微流控等领域具有巨大的应用潜力,而工程应用中圆管内表面超疏水涂层微结构的调控具有一定的挑战性。利用电化学沉积法,在不同的剪切应力下将聚多巴胺 (PDA) 涂层制备到不锈钢圆筒内壁,并将正十二硫醇(NDM)修饰到PDA表面,进而制备出PDA/NDM超疏水涂层。采用场发射扫描电镜(SEM)、接触角测试仪(CA)、傅里叶变换红外光谱(FT-IR)、X射线衍射测试仪(XRD)进行分析和表征。结果表明PDA沉积过程可分为两个阶段,第一阶段为溶液中的PDA颗粒在不锈钢基底上面团聚;第二阶段以PDA颗粒团聚体为基础,PDA进行原位生长,并且生长过程受到剪切应力的控制。不同剪切应力最终生长的形貌有所不同,当剪切应力为1.85 mPa时,涂层表面呈“珊瑚状”小球,粒径大小约15~24 μm;而当剪切应力为7.41 mPa时,涂层表面呈“片状”结构,粒径大小约1~4 μm。所制备出PDA/NDM涂层润湿角均大于150°,属于超疏水,且涂层具有良好的化学稳定性、耐热性、耐磨性以及耐腐蚀性。本工作对圆管内表面涂层的制备和表面纳微结构的调控具有一定的指导意义。
中图分类号:
周通, 陈晶晶, 涂春朝, 吉晓燕, 陆小华, 王昌松. 管道内多巴胺超疏水涂层的制备[J]. 化工学报, 2021, 72(7): 3814-3822.
ZHOU Tong, CHEN Jingjing, TU Chunzhao, JI Xiaoyan, LU Xiaohua, WANG Changsong. Preparation of dopamine super-hydrophobic coating in pipeline[J]. CIESC Journal, 2021, 72(7): 3814-3822.
u/(m/s) | Re* | τw* /mPa | PSD/μm |
---|---|---|---|
0.006 | 155 | 1.85 | 15~24 |
0.012 | 310 | 3.70 | 10~15 |
0.018 | 466 | 5.56 | 5~10 |
0.024 | 622 | 7.41 | 1~4 |
表1 不同流速下PDA粒径分布
Table 1 PDA particle size distribution under different velocities
u/(m/s) | Re* | τw* /mPa | PSD/μm |
---|---|---|---|
0.006 | 155 | 1.85 | 15~24 |
0.012 | 310 | 3.70 | 10~15 |
0.018 | 466 | 5.56 | 5~10 |
0.024 | 622 | 7.41 | 1~4 |
图7 不锈钢圆筒(a)、热处理之前(b)和热处理后(c)涂层的XRD谱图
Fig.7 XRD patterns of coating on stainless steel cylinder (a), before heat treatment (b) and after heat treatment (c)
15 | Ragesh P, Anand Ganesh V, Nair S V, et al. A review on ‘self-cleaning and multifunctional materials’[J]. Journal of Materials Chemistry A, 2014, 2(36): 14773-14797. |
16 | Yang H, Lü X, Ding W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT') in soils from an altitudinal transect at Mount Shennongjia[J]. Organic Geochemistry, 2015, 82: 42-53. |
17 | Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. |
18 | Wang H Y, Zhu Y X, Hu Z Y, et al. A novel electrodeposition route for fabrication of the superhydrophobic surface with unique self-cleaning, mechanical abrasion and corrosion resistance properties[J]. Chemical Engineering Journal, 2016, 303: 37-47. |
19 | Wang H X, Zhou H, Liu S, et al. Durable, self-healing, superhydrophobic fabrics from fluorine-free, waterborne, polydopamine/alkyl silane coatings[J]. RSC Advances, 2017, 7(54): 33986-33993. |
20 | Cao N, Miao Y Y, Zhang D L, et al. Preparation of mussel-inspired perfluorinated polydopamine film on brass substrates: superhydrophobic and anti-corrosion application[J]. Progress in Organic Coatings, 2018, 125: 109-118. |
21 | Kang S M, You I, Cho W K, et al. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating[J]. Angewandte Chemie International Edition, 2010, 49(49): 9401-9404. |
22 | Yan X J, Zhu X W, Ruan Y T, et al. Biomimetic, dopamine-modified superhydrophobic cotton fabric for oil-water separation[J]. Cellulose, 2020, 27(13): 7873-7885. |
23 | Zhang X Y, Wang H Y, Zhang X G, et al. A multifunctional super-hydrophobic coating based on PDA modified MoS2 with anti-corrosion and wear resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 239-247. |
24 | Wang W J, Wang J L, Wang X G, et al. Improving flame retardancy and self-cleaning performance of cotton fabric via a coating of in situ growing layered double hydroxides (LDHs) on polydopamine[J]. Progress in Organic Coatings, 2020, 149: 105930. |
25 | You I, Chang Seo Y, Lee H. Material-independent fabrication of superhydrophobic surfaces by mussel-inspired polydopamine[J]. RSC Advances, 2014, 4(20): 10330. |
26 | 管国锋, 赵汝溥. 化工原理[M]. 4版. 北京: 化学工业出版社, 2015. |
Guan G F, Zhao R P. Principles of Chemical Engineering[M]. 4th ed. Beijing: Chemical Industry Press, 2015. | |
27 | Fei B, Qian B T, Yang Z Y, et al. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine[J]. Carbon, 2008, 46(13): 1795-1797. |
1 | Hooda A, Goyat M S, Pandey J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings[J]. Progress in Organic Coatings, 2020, 142: 105557. |
2 | Nguyen-Tri P, Tran H N, Plamondon C O, et al. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review[J]. Progress in Organic Coatings, 2019, 132: 235-256. |
3 | Vazirinasab E, Jafari R, Momen G. Application of superhydrophobic coatings as a corrosion barrier: a review[J]. Surface and Coatings Technology, 2018, 341: 40-56. |
4 | 郭瑞生, 魏强兵, 吴杨, 等. 材料表面润湿性调控及减阻性能研究[J]. 摩擦学学报, 2015, 35(1): 23-30. |
Guo R S, Wei Q B, Wu Y, et al. Fabrication and drag reduction of controllable wetting surfaces[J]. Tribology, 2015, 35(1): 23-30. | |
5 | Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
6 | Chen H W, Ran T, Gan Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels[J]. Nature Materials, 2018, 17(10): 935-942. |
7 | Hu Z Y, Wang H Y, Zhu Y X, et al. Rapid development of thickness-controllable superamphiphobic coating on the inner wall of long narrow pipes[J]. AIChE Journal, 2017, 63(9): 3636-3641. |
8 | 汪怀远, 林丹, 张曦光, 等. 水性超疏水涂层的制备、调控与应用的研究进展[J]. 化工学报, 2021, 72(2): 669-680. |
Wang H Y, Lin D, Zhang X G, et al. Research progress on preparation, regulation and application of waterborne superhydrophobic coatings[J]. CIESC Journal, 2021, 72(2): 669-680. | |
9 | Nakayama K, Hiraga T, Zhu C Y, et al. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes[J]. Applied Surface Science, 2017, 423: 968-976. |
10 | Kumar A, Gogoi B. Development of durable self-cleaning superhydrophobic coatings for aluminium surfaces via chemical etching method[J]. Tribology International, 2018, 122: 114-118. |
11 | 张发兴, 卫晓利, 肖忠良, 等. 超临界CO2快速膨胀法制备SiO2/聚氨酯超疏水涂层[J]. 化工学报, 2012, 63(7): 2290-2297. |
Zhang F X, Wei X L, Xiao Z L, et al. Preparation of SiO2/PU superhydrophobic coating using rapid expansion of supercritical CO2[J]. CIESC Journal, 2012, 63(7): 2290-2297. | |
12 | Mertsch O, Schondelmaier D, Rudolph I, et al. Generation and characterization of super-hydrophobic micro- and nano-structured surfaces[J]. Journal of Adhesion Science & Technology, 2008, 22(15): 1967-1983. |
13 | Ryu J H, Hong S, Lee H. Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: a mini review[J]. Acta Biomaterialia, 2015, 27: 101-115. |
14 | Low W C, Rujitanaroj P O, Lee D K, et al. Mussel-inspired modification of nanofibers for REST siRNA delivery: understanding the effects of gene-silencing and substrate topography on human mesenchymal stem cell neuronal commitment[J]. Macromolecular Bioscience, 2015, 15(10): 1457-1468. |
28 | Morais A, Silveira G, Villis P C M, et al. Gold nanoparticles on a thiol-functionalized silica network for ascorbic acid electrochemical detection in presence of dopamine and uric acid[J]. Journal of Solid State Electrochemistry, 2012, 16(9): 2957-2966. |
[1] | 王晓萱, 胡晓红, 陆雨楠, 王士勇, 凡凤仙. 旋转膜过滤器内部流动特性数值模拟[J]. 化工学报, 2023, 74(4): 1489-1498. |
[2] | 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234. |
[3] | 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221. |
[4] | 常楚鑫, 徐黎婷, 殷嘉伦, 雒先, 贾洪伟. 浸没状态下的低压电润湿行为研究[J]. 化工学报, 2022, 73(4): 1673-1682. |
[5] | 王宪, 赵延兴, 董学强, 陈晓刚, 公茂琼. 甲烷二元体系的固液相平衡预测[J]. 化工学报, 2021, 72(8): 4009-4018. |
[6] | 曹玉柱,陆馨,王立通,袁满林,辛忠. 生物基聚苯并嗪/纤维素纳米晶超疏水防腐蚀涂层的制备及性能[J]. 化工学报, 2021, 72(11): 5717-5725. |
[7] | 吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020, 71(S1): 471-478. |
[8] | 沈逸, 张泽宇, 梁益涛, 黄永华, 耑锐, 张亮, 卜劭华. 磁补偿微重力环境实现及磁流体微重力内角流动研究[J]. 化工学报, 2020, 71(8): 3490-3499. |
[9] | 汪菊, 牛淑锋, 费莹, 漆虹. GO/Al2O3复合纳滤膜的制备及其稳定性能研究[J]. 化工学报, 2020, 71(6): 2795-2803. |
[10] | 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911. |
[11] | 郭晓璐,喻健良,闫兴清,徐鹏,徐双庆. 超临界CO2管道泄漏特性研究进展[J]. 化工学报, 2020, 71(12): 5430-5442. |
[12] | 李国豪,邓道明,宫敬. 湿气管道积液临界气速预测的新模型[J]. 化工学报, 2020, 71(11): 5107-5116. |
[13] | 闫振汉, 喻健良, 闫兴清, 陈庆, 曹琦, 刘少荣. 密相CO2管道泄漏失压过程热力学特性[J]. 化工学报, 2019, 70(8): 3071-3077. |
[14] | 雷兴国, 王庆锋, 李中. 基于合作博弈的管道外腐蚀多层次灰色动态评价[J]. 化工学报, 2019, 70(6): 2386-2396. |
[15] | 王彩红, 孙婧, 季书馨, 王燕子, 刘文芳. 聚乙烯亚胺/多巴胺改性氧化硅固定碳酸酐酶[J]. 化工学报, 2019, 70(5): 1887-1893. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 543
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 674
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||