1 |
Yusof N, Ismail A F. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review[J]. Journal of Analytical and Applied Pyrolysis, 2012, 93: 1-13.
|
2 |
Khayyam H, Jazar R N, Nunna S, et al. PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: experimental and mathematical modelling[J]. Progress in Materials Science, 2020, 107: 100575.
|
3 |
Han Q, Zhang W, Han Z, et al. Preparation of PAN-based carbon fiber/Co3O4 composite and potential application in structural lithium-ion battery anodes[J]. Ionics, 2019, 25(11): 5333-5340.
|
4 |
Yoo S H, Park S, Park Y, et al. Facile method to fabricate carbon fibers from textile-grade polyacrylonitrile fibers based on electron-beam irradiation and its effect on the subsequent thermal stabilization process[J]. Carbon, 2017, 118: 106-113.
|
5 |
Liu D, Ouyang Q, Jiang X, et al. Thermal properties and thermal stabilization of lignosulfonate-acrylonitrile-itaconic acid terpolymer for preparation of carbon fiber[J]. Polymer Degradation and Stability, 2018, 150: 57-66.
|
6 |
Kim S Y, Lee S, Park S, et al. Continuous and rapid stabilization of polyacrylonitrile fiber bundles assisted by atmospheric pressure plasma for fabricating large-tow carbon fibers[J]. Carbon, 2015, 94: 412-416.
|
7 |
Hao J, Liu Y, Lu C. Effect of acrylonitrile sequence distribution on the thermal stabilization reactions and carbon yields of poly(acrylonitrile-co-methyl acrylate)[J]. Polymer Degradation and Stability, 2018, 147: 89-96.
|
8 |
Jamil S N A M, Daik R, Ahmad I. Redox synthesis and thermal behaviorof acrylonitrile-methyl acrylate-fumaronitrile terpolymer as precursor for carbon fiber[J]. International Journal of Chemical Engineering and Applications, 2012, 3(6): 416-420.
|
9 |
Nguyen-Thai N U, Hong S C. Controlled architectures of poly(acrylonitrile-co-itaconic acid) for efficient structural transformation into carbon materials[J]. Carbon, 2014, 69: 571-581.
|
10 |
Can D S, Baskan H, Gumrukcu S, et al. A novel carbon nanofiber precursor: poly(acrylonitrile-co-vinylacetate-co-itaconic acid) terpolymer[J]. J. Nanosci. Nanotechnol., 2019, 19(7): 3844-3853.
|
11 |
Riahinezhad M, McManus N, Penlidis A. Effect of monomer concentration and pH on reaction kinetics and copolymer microstructure of acrylamide/acrylic acid copolymer[J]. Macromolecular Reaction Engineering, 2015, 9(2): 100-113.
|
12 |
Nagai S. Polymerization and polymers of itaconic acid derivatives(\Ⅴ). The copolymerization reactivity of itaconic acid in an aqueous solution[J]. Bulletin of the Chemical Society of Japan, 1963, 36: 1459-1463.
|
13 |
Zhao Y, Wang C, Wang Y, et al. Aqueous deposited copolymerization of acrylonitrile and itaconic acid[J]. Journal of Applied Polymer Science, 2009, 111(6): 3163-3169.
|
14 |
Bajaj P, Paliwal D, Gupta A. Acrylonitrile–acrylic acids copolymers(I). Synthesis and characterization[J]. Journal of Applied Polymer Science, 1993, 49(5): 823-833.
|
15 |
Yao Z, Chen H J, Qin Y X, et al. Effect of pH value on the aqueous precipitation copolymerization of acrylonitrile and vinyl acetate[J]. Journal of Applied Polymer Science, 2011, 119(3): 1486-1491.
|
16 |
Yoshida Y, Itoh N, Saito Y, et al. Application of water-soluble radical initiator, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, to a study of oxidative stress[J]. Free Radic Res, 2004, 38(4): 375-84.
|
17 |
Wahl R R, Madison S, DePinto R, et al. Mechanistic studies on the decomposition of water soluble azo-radical-initiators[J]. Journal of the Chemical Society, Perkin Transactions 2, 1998, 9: 2009-2018.
|
18 |
Werber J, Wang Y J, Milligan M, et al. Analysis of 2,2'-azobis (2-amidinopropane) dihydrochloride degradation and hydrolysis in aqueous solutions[J]. J. Pharm. Sci., 2011, 100(8): 3307-3315.
|
19 |
Xia J, Matyjaszewski K. Controlled "living" radical polymerization. Homogeneous reverse atom transfer radical polymerization using AIBN as the initiator[J]. Macromolecules, 1997, 30(25): 7692-7696.
|
20 |
Fu C, Yang B, Zhu C, et al. Synthesis of gradient copolymers by concurrent enzymatic monomer transformation and RAFT polymerization[J]. Polymer Chemistry, 2013, 4(24): 5720-5725.
|
21 |
Bajaj P, Sen K, Bahrami S H. Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide[J]. Journal of Applied Polymer Science, 1996, 59(10): 1539-1550.
|
22 |
Upson R W. Aliphatic azo compounds having guanyl radicals on tertiary carbon attached to azo nitrogen: US2599299A[P]. 1952-06-03.
|
23 |
Kuang W, Li R, Zhang J, et al. Synthesis, characterization and properties of hydrophobically modified polyacrylamides[J]. Asian Journal of Chemistry, 2014, 26(1): 154-160.
|
24 |
顾学芳, 田澍, 张跃华, 等. 水溶性偶氮引发剂引发丙烯酸钠的反相乳液聚合反应[J]. 化学世界, 2008, 49(12): 715-718.
|
|
Gu X F, Tian S, Zhang Y H, et al. Studies on the inverse emulsion polymerization of sodium acrylate via water-soluble azo initiators [J]. Chemical World, 2008, 49(12): 715-718.
|
25 |
谢芝焕, 陈友汜, 欧阳琴, 等. 偶氮二氰基戊酸引发丙烯腈溶液聚合的研究[J]. 合成纤维工业, 2015, 38(3): 13-17.
|
|
Xie Z H,Chen Y S,Ouyang Q, et al. Study on acrylonitrile solution polymerization initiated by azobiscyanopentanoic acid [J]. China Synthetic Fiber Industry, 2015, 38(3): 13-17.
|
26 |
王素素, 陈友汜, 欧阳琴, 等. 偶氮引发剂对PAN及其原丝结构和热稳定化行为的影响[J]. 合成纤维工业, 2017, 40(3): 11-16.
|
|
Wang S S,Chen Y S,Ouyang Q, et al. Effect of azo initiators on structure and thermal stabilization behavior of PAN and its precursor [J]. China Synthetic Fiber Industry, 2017, 40(3): 11-16.
|
27 |
王素素, 陈友汜, 欧阳琴, 等. 脒端基对聚丙烯腈原丝氧碳化行为的影响[J]. 材料科学与工程学报, 2018, 36(4): 547-553.
|
|
Wang S S,Chen Y S,Ouyang Q, et al. Effect of amidine end group on preoxidation and carbonation of polyacrylonitrile precursor. Journal of Materials Science and Engineering, 2018, 36(4): 547-553.
|
28 |
Wittenberg N F G, Buback M, Stach M, et al. Chain transfer to 2-mercaptoethanol in methacrylic acid polymerization in aqueous solution[J]. Macromolecular Chemistry and Physics, 2012, 213(24): 2653-2658.
|
29 |
Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33(11): 1561-1565.
|
30 |
Ko Y G, Choi U S, Kim T Y, et al. FT-IR and isotherm study on anion adsorption onto novel chelating fibers[J]. Macromolecular Rapid Communications, 2002, 23(9): 535-539.
|
31 |
Kirilova E, Bulanovs A, Puckins A, et al. Spectral and structural characterization of chromium (Ⅲ) complexes bearing 7-oxo-7H-benzo [de] anthracen-3-yl-amidines ligand[J]. Polyhedron, 2019, 157: 107-115.
|
32 |
潘祖仁. 高分子化学[M]. 北京: 化学工业出版社, 2007.
|
|
Pan Z R. Polymer Chemistry [M]. Beijing: Chemical Industry Press, 2007.
|
33 |
Moad G. A critical assessment of the kinetics and mechanism of initiation of radical polymerization with commercially available dialkyldiazene initiators[J]. Progress in Polymer Science, 2019, 88: 130-188.
|
34 |
城内宏, 柚口貞夫, 渡辺正元. アクリロ二トリル重合体の重合条件と分子量分布との関係[J]. 工業化学雑誌, 1964, 67(7): 1063-1068.
|
35 |
张旺玺. 聚丙烯腈基碳纤维[M]. 上海: 东华大学出版社, 2005.
|
|
Zhang W X. Polyacrylonitrile-based carbon fiber[M]. Shanghai: Donghua University Press, 2005.
|