化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2233-2240.DOI: 10.11949/0438-1157.20201242
收稿日期:
2020-08-31
修回日期:
2020-11-24
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
王亦飞
作者简介:
周烨(1995—),男,硕士研究生,基金资助:
ZHOU Ye(),XIAO Huixia,WANG Yifei(),YU Guangsuo
Received:
2020-08-31
Revised:
2020-11-24
Online:
2021-04-05
Published:
2021-04-05
Contact:
WANG Yifei
摘要:
为改善褐煤成浆性,使其满足水煤浆气化需求,利用石油焦配煤,煤油作为表面修饰剂,研究改性方式对褐煤成浆性的影响。结果表明:(1)石油焦具有较强的疏水性,添加石油焦配煤显著提高褐煤的成浆浓度,且成浆浓度与石油焦占干基固体颗粒质量分数α(α>10.0%)正相关;(2)添加占干基固体颗粒质量β的煤油表面修饰配煤混合颗粒可以增强颗粒疏水性,进一步提高煤焦浆浓度,黏度随β先减小后增大,β最佳值与α(α>10.0%)负相关;(3)添加微量石油焦(α<1.0%)煤油悬浮液修饰时,可以提高煤油修饰效果,降低煤焦浆黏度η,α最佳值与β正相关。
中图分类号:
周烨, 肖慧霞, 王亦飞, 于广锁. 基于配煤和表面修饰改善褐煤成浆性的研究[J]. 化工学报, 2021, 72(4): 2233-2240.
ZHOU Ye, XIAO Huixia, WANG Yifei, YU Guangsuo. Study on improving slurryability of lignite based on coal blending and surface modification[J]. CIESC Journal, 2021, 72(4): 2233-2240.
样品 | 工业分析/% | 元素分析/% | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | Cad | Had | Oad | Nad | Sad | |
W | 5.60 | 6.58 | 40.60 | 47.22 | 65.50 | 3.97 | 16.98 | 0.48 | 0.89 |
Z | 0.27 | 0.51 | 9.47 | 89.75 | 97.40 | 3.06 | 0.10 | 0.88 | 4.32 |
表1 样品工业分析和元素分析
Table 1 Industrial analysis and elemental analysis of samples
样品 | 工业分析/% | 元素分析/% | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad | Cad | Had | Oad | Nad | Sad | |
W | 5.60 | 6.58 | 40.60 | 47.22 | 65.50 | 3.97 | 16.98 | 0.48 | 0.89 |
Z | 0.27 | 0.51 | 9.47 | 89.75 | 97.40 | 3.06 | 0.10 | 0.88 | 4.32 |
混合方式 | η/(mPa·s) | θ/(°) |
---|---|---|
A | 641.93 | 75 |
B | 851.87 | 69 |
C | 995.84 | 46 |
SW-Z | 1100.27 | 44 |
表2 浓度为62.0%,α=25.0%时K不同改性方式的黏度和接触角
Table 2 The viscosity and contact angle of kerosene in different modification mode when concentration is 62.0%,α=25.0%
混合方式 | η/(mPa·s) | θ/(°) |
---|---|---|
A | 641.93 | 75 |
B | 851.87 | 69 |
C | 995.84 | 46 |
SW-Z | 1100.27 | 44 |
固体颗粒 | θ/(°) |
---|---|
W+K | 65 |
W | 37 |
Z+K | 80 |
Z | 78 |
W+Z+K(α=25.0%) | 70 |
表3 β=0.5%的K修饰W和Z的接触角变化
Table 3 Change of contact angle between K modified W and Z at β=0.5%
固体颗粒 | θ/(°) |
---|---|
W+K | 65 |
W | 37 |
Z+K | 80 |
Z | 78 |
W+Z+K(α=25.0%) | 70 |
固体颗粒 | 接触角/(°) |
---|---|
SW-K | 66 |
E | 72 |
F | 67 |
SW-Z-K(α=0.00045%粗) | 68 |
SW-Z-K (α=0.00045%细) | 70 |
表4 β=0.5%时不同石油焦改性方式的接触角变化
Table 4 Change of contact angle at β=0.5%
固体颗粒 | 接触角/(°) |
---|---|
SW-K | 66 |
E | 72 |
F | 67 |
SW-Z-K(α=0.00045%粗) | 68 |
SW-Z-K (α=0.00045%细) | 70 |
1 | Rong L, Xiao J, Wang X, et al. Low-rank coal drying behaviors under negative pressure: thermal fragmentation, volume shrinkage and changes in pore structure[J]. Journal of Cleaner Production, 2020, 272: 122572. |
2 | Ren Y, Zheng J, Xu Z, et al. Effect of petcoke on the physical-chemical properties of lignite under microwave pyrolysis and its moisture re-adsorption capacity[J]. Fuel, 2019, 250: 1-7. |
3 | 温宏炎, 张玉明, 纪德馨, 等. 油泥焦与褐煤共燃特性及动力学[J]. 化工学报, 2020, 71(2): 755-765. |
Wen H Y, Zhang Y M, Ji D X, et al. Co-combustion of oil sludge char and brown coal: characteristics and kinetics [J]. CIESC Journal, 2020, 71(2): 755-765. | |
4 | 宋艳培, 庄修政, 詹昊, 等. 城市污泥/褐煤共水热碳化产物的热化学转化特性及规律研究[J]. 化工学报, 2020, 71(5): 2320-2332. |
Song Y P, Zhuang X Z, Zhan H, et al. Investigation on thermochemical conversion characteristics and regularity of co-hydrothermal carbonization solid fuel from sewage sludge and lignite[J]. CIESC Journal, 2020, 71(5): 2320-2332. | |
5 | 吴渊默, 张守玉, 张华, 等. 高温干燥对褐煤孔隙结构及水分复吸的影响[J]. 化工学报, 2019, 70(1): 199-206. |
Wu Y M, Zhang S Y, Zhang H, et al. Relationship between pore structure and moisture reabsorption of lignite dewatered by high temperature drying process [J]. CIESC Journal, 2019, 70(1): 199-206. | |
6 | 宋成建, 曲建林, 杨志远, 等. 分散剂与神府煤成浆性的匹配规律[J]. 化工学报, 2016, 67(9): 3965-3971. |
Song C J, Qu J L, Yang Z Y, et al. Matching rules between dispersants and Shenfu coal slurryability [J]. CIESC Journal, 2016, 67(9): 3965-3971. | |
7 | Li D, Liu J, Wang S, et al. Study on coal water slurries prepared from coal chemical wastewater and their industrial application[J]. Applied Energy, 2020, 268: 114976. |
8 | Gong Y, Yu G, Guo Q, et al. Progress on opposed multi-burner (OMB) coal-water slurry gasification technology and its industrial applications[J]. Energy Procedia, 2017, 142: 1089-1094. |
9 | 程晨, 薛志村, 郭庆华, 等. 撞击气流床气化炉内雾化过程中颗粒运动特性[J]. 化工学报, 2019, 70(12): 4536-4545. |
Cheng C, Xue Z C, Guo Q H, et al. Particle motion characteristics of atomization process in impinging entrained-flow gasifier[J]. CIESC Journal, 2019, 70(12): 4536-4545. | |
10 | Tu Y, Feng P, Ren Y, et al. Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation[J]. Fuel, 2019, 238: 34-43. |
11 | Fu J, Wang J. Enhanced slurryability and rheological behaviors of two low-rank coals by thermal and hydrothermal pretreatments[J]. Powder Technology, 2014, 266: 183-190. |
12 | Al-Zareer M, Dincer I, Rosen M A. Production of hydrogen-rich syngas from novel processes for gasification of petroleum cokes and coals[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11577-11592. |
13 | Li J, Wang Y, Zhu L, et al. Experimental study on co-pyrolysis of petroleum coke and coals: synergy effects and co-gasification reactivity[J]. Fuel, 2020, 279: 118368. |
14 | Ren Y, Zheng J, Xu Z, et al. Petroleum coke facilitate the upgrade of lignite under microwave irradiation for slurryability improvement[J]. Fuel, 2018, 223: 414-421. |
15 | 王璐璐, 宋涛, 张将, 等. 10 MWth高硫石油焦化学链气化制合成气耦合硫磺回收新系统模拟研究[J]. 化工学报, 2019, 70(6): 2279-2288. |
Wang L L, Song T, Zhang J, et al. Simulation of chemical looping gasification of high-sulfur petroleum coke for syngas production coupled with recycling sulfur in 10MWth system[J]. CIESC Journal, 2019, 70(6): 2279-2288. | |
16 | Yang S I, Wu M S, Hsu T C. Spray combustion characteristics of kerosene/bio-oil (Ⅰ): Experimental study[J]. Energy, 2017, 119: 26-36. |
17 | Cunha D A, Montes L F, Castro E V R, et al. NMR in the time domain: a new methodology to detect adulteration of diesel oil with kerosene[J]. Fuel, 2016, 166: 79-85. |
18 | 张杰. 基于颗粒界面修饰的悬浮液黏度调控方法[D]. 上海: 华东理工大学, 2017. |
Zhang J. The regulation method of suspensions viscosity based on particle interface modification[D]. Shanghai: East China University of Science and Technology, 2017. | |
19 | Liu M, Duan Y, Ma X. Effect of surface chemistry and structure of sludge particles on their co-slurrying ability with petroleum coke[J]. International Journal of Chemical Reactor Engineering, 2014, 12(1): 429-439. |
20 | Wang S N, Liu J Z, Wang Y, et al. Slurry characteristics and mechanism analysis of petroleum coke–coal water slurry[J]. Asia-Pacific Journal of Chemical Engineering, 2019, 14(2): e2291. |
21 | 高夫燕, 刘建忠, 岑可法. 褐煤与石油焦的共成浆特性及机理[J]. 热力发电, 2014, 43(6): 92-97. |
Gao F Y, Liu J Z, Cen K F. Characteristics and mechanism of co-slurry of lignite and petroleum coke[J]. Thermal Power Generation, 2014, 43(6): 92-97. | |
22 | 徐梦涵. 基于界面修饰的高浓度固体颗粒悬浮液的制备研究[D]. 上海: 华东理工大学, 2015. |
Xu M H. The research of the preparation of highly concentrated suspension of solid particles based on the interface modification[D]. Shanghai: East China University of Science and Technology, 2015. | |
23 | 王春雨, 赵辉, 代正华, 等. 基于颗粒表面修饰的高浓度水煤浆制备及其流动性能[J]. 煤炭转化, 2020, 43(3): 57-63. |
Wang C Y, Zhao H, Dai Z H, et al. Preparation of high concentration coal water slurry by particle surface modification and ist fluidity[J]. Coal Conversion, 2020, 43(3): 57-63. | |
24 | Chen X, Wang C, Wang Z, et al. Preparation of high concentration coal water slurry of lignite based on surface modification using the second fluid and the second particle[J]. Fuel, 2019, 242: 788-793. |
25 | 胡晨辉, 王亦飞, 包泽彬, 等. 蒸发热水塔内固体颗粒对气泡运动的影响[J]. 化工学报, 2019, 70(1): 39-48. |
Hu C H, Wang Y F, Bao Z B, et al. Effect of solid particles in evaporative hot water tower on bubble movement [J]. CIESC Journal, 2019, 70(1): 39-48. | |
26 | 高夫燕, 刘建忠, 王传成, 等. 石油焦的成浆性及水焦浆的流变性和稳定性[J]. 化工学报, 2010, 61(11): 2912-2918. |
Gao F Y, Liu J Z, Wang C C, et al. Slurryability of petroleum coke and rheological characteristics and stability of PCWS[J]. CIESC Journal, 2010, 61(11): 2912-2918. | |
27 | Ren L, Wei R, Zhu T. Co-gasification reactivity of petroleum coke with coal and coal liquefaction residue[J]. Journal of the Energy Institute, 2020, 93(1): 436-441. |
28 | Modaresi Z K, Karimi G, Mowla D. Study of co-combustion of dried sewage sludge with coke: thermogravimetric assessment and gaseous emissions[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102871. |
29 | Kwon Y, Patankar N, Choi J, et al. Design of surface hierarchy for extreme hydrophobicity[J]. Langmuir, 2009, 25(11): 6129-6136. |
30 | Dalawai S P, Saad Aly M A, Latthe S S, et al. Recent advances in durability of superhydrophobic self-cleaning technology: a critical review[J]. Progress in Organic Coatings, 2020, 138: 105381. |
31 | 陈兴. 基于颗粒表面修饰的高浓度褐煤水煤浆的制备[D]. 上海: 华东理工大学, 2019. |
Chen X. Preparation of high concentration coal water slurry of lignite based on particle surface modification[D]. Shanghai: East China University of Science and Technology, 2019. |
[1] | 杨珍, 曹景沛, 朱陈, 刘天龙, 赵小燕. B-ZSM-5酸调控及催化褐煤热解挥发分制轻质芳烃研究[J]. 化工学报, 2021, 72(11): 5633-5642. |
[2] | 王博阳, 夏吉利, 董晓玲, 郭行, 李文翠. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750. |
[3] | 宋艳培, 庄修政, 詹昊, 徐彬, 阴秀丽, 吴创之. 城市污泥/褐煤共水热碳化产物的热化学转化特性及规律研究[J]. 化工学报, 2020, 71(5): 2320-2332. |
[4] | 温宏炎, 张玉明, 纪德馨, 张光义. 油泥焦与褐煤共燃特性及动力学[J]. 化工学报, 2020, 71(2): 755-765. |
[5] | 宋艳培, 庄修政, 詹昊, 王南涛, 阴秀丽, 吴创之. 污泥与褐煤共水热碳化的协同特性研究[J]. 化工学报, 2019, 70(8): 3132-3141. |
[6] | 王璐璐, 宋涛, 张将, 段媛媛, 沈来宏. 10MWth高硫石油焦化学链气化制合成气耦合硫磺回收新系统模拟研究[J]. 化工学报, 2019, 70(6): 2279-2288. |
[7] | 吴渊默, 张守玉, 张华, 慕晨, 李昊, 宋晓冰, 吕俊复. 高温干燥对褐煤孔隙结构及水分复吸的影响[J]. 化工学报, 2019, 70(1): 199-206. |
[8] | 周新志, 邵伦, 崔岢, 杨阳, 周余, 张若彬. 褐煤微波干燥提质生产线的多级功率控制系统研究[J]. 化工学报, 2018, 69(S2): 274-282. |
[9] | 崔健, 段伦博, 赵长遂. 混燃石油焦循环流化床锅炉硫污染物排放特性[J]. 化工学报, 2018, 69(5): 2158-2165. |
[10] | 曲洋, 初茉, 朱书全, 张超, 郝成亮, 徐芳. 回转窑内利用液化残渣共热褐煤以抑制其粉化的影响因素分析[J]. 化工学报, 2018, 69(5): 2166-2174. |
[11] | 陆遥, 刁永发, 陈晨, 李晓诠, 陈珊珊. 溴化石油焦氧化烟气中Hg0的机理[J]. 化工学报, 2018, 69(10): 4394-4401. |
[12] | 柳明, 沈中杰, 韩冬, 梁钦锋, 许建良, 刘海峰. 一种石油焦与CO2高温气化原位反应特性[J]. 化工学报, 2017, 68(4): 1622-1628. |
[13] | 王晨平, 段钰锋, 佘敏, 朱纯, 杨志忠. SO2活化改性石油焦吸附剂的汞吸附特性[J]. 化工学报, 2017, 68(12): 4764-4773. |
[14] | 徐芳, 刘辉, 王擎, 刘营. 霍林河褐煤化学结构特性的13C NMR与FTIR对比分析[J]. 化工学报, 2017, 68(11): 4272-4278. |
[15] | 刘丽华, 初茉, 党彤彤, 畅志兵, 曲洋. 热提质褐煤预氧化后自燃特性变化及其自由基原位分析[J]. 化工学报, 2017, 68(10): 3967-3977. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||