1 |
Du X, Li C, Zhao L, et al. Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke[J]. Appl. Catal. B: Environ., 2018, 232: 37-48.
|
2 |
Wang M X, Guo Z, Huang Z H, et al. NH3-activated carbon nanofibers for low-concentration NO removal at room temperature[J]. Catal. Commun., 2015, 62: 83-88.
|
3 |
Yang L, Jiang X, Yang Z, et al. Effect of MnSO4 on the removal of SO2 by manganese-modified activated coke[J]. Ind. Eng. Chem. Res., 2015, 54(5): 1689-1696.
|
4 |
Yuan J, Jiang X, Zou M, et al. Copper ore-modified activated coke: highly efficient and regenerable catalysts for the removal of SO2[J]. Ind. Eng. Chem. Res., 2018, 57(46): 15731-15739.
|
5 |
Gao X, Liu S, Zhang Y, et al. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO[J]. J. Hazard. Mater., 2011, 188(1/2/3): 58-66.
|
6 |
Wang J, Yan Z, Liu L, et al. Low-temperature SCR of NO with NH3 over activated semi-coke composite-supported rare earth oxides[J]. Appl. Surf. Sci., 2014, 309: 1-10.
|
7 |
Li J, Kobayashi N, Hu Y. A new flue gas activation process for SO2 removal with activated coke in coal power plant[J]. J. Environ. Eng., 2007, 2(4): 740-751.
|
8 |
Jüntgen H, Richter E, Knoblauch K, et al. Catalytic NOx reduction by ammonia on carbon catalysts[J]. Chem. Eng. Sci., 1988, 43(3): 419-428.
|
9 |
Guo Z, Xie Y, Hong I, et al. Catalytic oxidation of NO to NO2 on activated carbon[J]. Energy Convers. Manage., 2001, 42(15): 2005-2018.
|
10 |
Yao L, Yang L, Jiang W, et al. Removal of SO2 from flue gas on a copper modified activated coke prepared by a novel one-step carbonization activation blending method[J]. Ind. Eng. Chem. Res., 2019, 58(34): 15693-15700.
|
11 |
Zhao B, Yi H, Tang X, et al. Copper modified activated coke for mercury removal from coal-fired flue gas[J]. Chem. Eng. J., 2016, 286: 585-593.
|
12 |
Wang J, Yan Z, Liu L, et al. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke[J]. Appl. Surf. Sci., 2014, 313: 660-669.
|
13 |
Fan L, Chen J, Guo J, et al. Influence of manganese, iron and pyrolusite blending on the physiochemical properties and desulfurization activities of activated carbons from walnut shell[J]. J. Anal. Appl. Pyrol., 2013, 104: 353-360.
|
14 |
Belhachemi M, Rios R V R A, Addoun F, et al. Preparation of activated carbon from date pits: effect of the activation agent and liquid phase oxidation[J]. J. Anal. Appl. Pyrol., 2009, 86(1): 168-172.
|
15 |
Huang T, Li Y, Guo J, et al. Desulfurization activity of cobalt-blended into activated carbon by one-step activation method[J]. Asian J. Chem., 2014, 26(4): 1058-1062.
|
16 |
Yang L, Jiang X, Huang T, et al. Physicochemical characteristics and desulfurization activity of pyrolusite-blended activated coke[J]. Environ. Technol., 2015, 36(22): 2847-2854.
|
17 |
Wang P, Jiang X, Zhang C, et al. Desulfurization and regeneration performance of titanium ore modified activated coke[J]. Energ. Fuel., 2017, 31(5): 5266-5274.
|
18 |
Yang L, Jiang X, Jiang W, et al. Cyclic regeneration of pyrolusite-modified activated coke by blending method for flue gas desulfurization[J]. Energ. Fuel., 2017, 31(4): 4556-4564.
|
19 |
Yang L, Jiang W, Yao L, et al. Suitability of pyrolusite as additive to activated coke for low-temperature NO removal[J]. J. Chem. Technol. Biot., 2018, 93(3): 690-697.
|
20 |
Ma J, Liu Z, Liu Q, et al. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures—role of V2O5 on SO2 removal[J]. Fuel Process. Technol., 2008, 89(3): 242-248.
|
21 |
Li Y, Zhang X, Huangfu L, et al. The simultaneous removal of SO2 and NO from flue gas over activated coke in a multi-stage fluidized bed at low temperature[J]. Fuel, 2020, 275: 117862.
|
22 |
Jung S, Oh S, Choi G, et al. Production and characterization of microporous activated carbons and metallurgical bio-coke from waste shell biomass[J]. J. Anal. Appl. Pyrol., 2014, 109: 123-131.
|
23 |
Sreńscek Nazzal J, Glonek K, Młodzik J, et al. Increase the microporosity and CO2 adsorption of a commercial activated carbon[J]. Appl. Mech. Mater., 2015, 749: 17-21.
|
24 |
Liu Y, Qu Y, Guo J, et al. Thermal regeneration of manganese supported on activated carbons treated by HNO3 for desulfurization[J]. Energ. Fuel., 2015, 29(3): 1931-1940.
|
25 |
谢银银. 锰系脱硝催化剂的制备及表征[D]. 重庆: 重庆大学, 2012.
|
|
Xie Y Y. Preparation and characterization of manganese-based catalysts [D]. Chongqing: Chongqing University, 2012.
|
26 |
Yang S, Qi F, Xiong S, et al. MnOx supported on Fe–Ti spinel: a novel Mn based low temperature SCR catalyst with a high N2 selectivity[J]. Appl. Catal. B: Environ., 2016, 181: 570-580.
|
27 |
Zhan S, Qiu M, Yang S, et al. Facile preparation of MnO2 doped Fe2O3 hollow nanofibers for low temperature SCR of NO with NH3[J]. J. Mater. Chem. A, 2014, 2(48): 20486-20493.
|
28 |
Ţucureanu V, Matei A, Avram A M. FTIR spectroscopy for carbon family study[J]. Crit. Rev. Anal. Chem., 2016, 46(6): 502-520.
|
29 |
Teng L H, Tang T D. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers[J]. J. Zhejiang Univ.-Sci. A, 2008, 9(5): 720-726.
|
30 |
Liao L, Pan C. Enhanced electrochemical capacitance of nitrogen-doped carbon nanotubes synthesized from amine flames[J]. Soft Nanoscience Letters, 2011, 1(1): 16-23.
|
31 |
Mansor N A, Tessonnier J P, Rinaldi A, et al. Chemically modified multi-walled carbon nanotubes (MWCNTs) with anchored acidic groups[J]. Sains Malaysiana, 2012, 41(5): 603-609.
|
32 |
Jin R, Liu Y, Wang Y, et al. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl. Catal. B: Environ., 2014, 148: 582-588.
|
33 |
Szymański G S, Grzybek T, Papp H. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3[J]. Catal. Today, 2004, 90(1): 51-59.
|
34 |
Rubio B, Izquierdo M T. Low cost adsorbents for low temperature cleaning of flue gases[J]. Fuel, 1998, 77(6): 631-637.
|
35 |
Wang S, Zhu Z H. Effects of acidic treatment of activated carbons on dye adsorption[J]. Dyes and Pigments, 2007, 75(2): 306-314.
|
36 |
翟润生, 蔡茂盛, Kolb D M. 硫酸溶液中Pt(111)电极面上存在SO42-的XPS证据[J]. 物理化学学报, 1994, 10(8): 741-743.
|
|
Zhai R S, Cai M S, Kolb D M. XPS evidence of sulfate anion adsorption on emersed Pt(111) in H2SO4 solution [J]. Acta Physico-Chimica Sinica, 1994, 10(8): 741-743.
|
37 |
David G O, Tsuji K, Shiraishi I. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process[J]. Fuel Process. Technol., 2000, 65(99): 393-405.
|
38 |
Tang Q, Zhang Z G, Zhu W P, et al. SO2 and NO selective adsorption properties of coal-based activated carbons[J]. Fuel, 2005, 84(4): 461-465.
|
39 |
许绿丝, 岑泽文, 曾汉才, 等. 活性炭纤维吸附 NO和SO2的试验研究[J]. 华中科技大学学报(自然科学版), 2006, 34(2): 105-107.
|
|
Xu L S, Cen Z W, Zeng H C, et al. An experimental study on the adsorption of NO and SO2 by activated carbon fibers [J]. J. Huazhong Univ. Sci. Technol. (Natural Science Edition), 2006, 34(2): 105-107.
|
40 |
Rubel A M, Stencel J M. The effect of low-concentration SO2 on the adsorption of NO from gas over activated carbon[J]. Fuel, 1997, 76(6): 521-526.
|
41 |
Li K, Ling L, Lu C, et al. Catalytic removal of SO2 over ammonia-activated carbon fibers[J]. Carbon, 2001, 39(12): 1803-1808.
|
42 |
周静, 于才渊. 改性炭基催化剂低温烟气选择性还原脱硝性能研究[J]. 干燥技术与设备, 2015, 13(2): 33-38.
|
|
Zhou J, Yu C Y. Investigation of modified carbon-based catalyst on low-temperature selective reduction of flue gas denitration performance [J]. Dry. Technol. Equip., 2015, 13(2): 33-38.
|
43 |
张翠平. SO2对MnOx/PG催化剂低温脱硝活性影响行为及机理研究[D]. 合肥: 合肥工业大学, 2013.
|
|
Zhang C P. The factors and mechanism study of SO2 influence on the denitration of MnOx/PG catalysts at low temperature [D]. Hefei: Hefei University of Technology, 2013.
|
44 |
吕晓纬, 万亚锋, 刘波, 等. 锰前驱体对负载型氧化锰催化剂脱硝性能的影响[J]. 工业催化, 2014, 22(12): 953-957.
|
|
Lyu X W, Wan Y F, Liu B, et al. Effects of Mn precursors on performance of supported Mn/Al2O3 catalysts for selective catalytic reduction of NO[J]. Industrial Catalysis, 2014, 22(12): 953-957.
|