化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2279-2288.DOI: 10.11949/j.issn.0438-1157.20181415
收稿日期:
2018-11-27
修回日期:
2019-02-27
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
宋涛
作者简介:
<named-content content-type="corresp-name">王璐璐</named-content>(1993—),女,博士研究生,<email>18251811255@163.com</email>
基金资助:
Lulu WANG1(),Tao SONG2(),Jiang ZHANG1,Yuanyuan DUAN2,Laihong SHEN1
Received:
2018-11-27
Revised:
2019-02-27
Online:
2019-06-05
Published:
2019-06-05
Contact:
Tao SONG
摘要:
基于化学链气化技术依靠气固反应定向调控气化产物中H2S和SO2摩尔比为2的优势,将化学链气化与Claus工艺中的催化转化单元相结合,提出了高硫石油焦化学链气化制合成气和回收硫磺的新系统。针对系统核心单元,即化学链气化过程,基于Aspen Plus,开展热输入10 MWth的高硫石油焦化学链气化过程模拟,以赤铁矿石为载氧体,水蒸气为气化介质,重点考察了氧碳比、气化温度对化学链气化过程及硫转化过程的影响。结果发现,氧碳比的增大导致合成气产率显著降低,但系统从需要外部提供能量逐渐转变为对外部放热,在氧碳比0.8669~0.9535区间内,系统可以达到热量自平衡。同时,气化温度的提高对合成气产率是有利的,在975℃时达到2.15 m3/kg,主要是由于CO体积分数随气化温度增加而增加。氧碳比和气化温度的提高都会导致H2S浓度的降低和SO2浓度的提高。并且研究了当H2S和SO2摩尔比为2的最佳工况时,氧碳比和气化温度为反相关,其中氧碳比为0.8669,气化温度为900℃时,冷煤气效率为64.09%。
中图分类号:
王璐璐, 宋涛, 张将, 段媛媛, 沈来宏. 10MWth高硫石油焦化学链气化制合成气耦合硫磺回收新系统模拟研究[J]. 化工学报, 2019, 70(6): 2279-2288.
Lulu WANG, Tao SONG, Jiang ZHANG, Yuanyuan DUAN, Laihong SHEN. Simulation of chemical looping gasification of high-sulfur petroleum coke for syngas production coupled with recycling sulfur in 10 MWth system[J]. CIESC Journal, 2019, 70(6): 2279-2288.
工业分析/% | 热值/ (MJ/kg) | 元素分析/% | 硫分析/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
水分 | 固定碳 | 挥发分 | 灰分 | C | H | O | N | S | 硫化铁硫 | 硫酸盐硫 | 有机硫 | |
0.5 | 88.613 | 10.995 | 0.392 | 34.4 | 86.372 | 3.762 | 1.686 | 0.945 | 6.843 | 0.6843 | 0.3422 | 5.8165 |
表1 石油焦的工业分析、元素分析以及形态硫含量
Table 1 Proximate, ultimate and sulfur analysis of petroleum coke
工业分析/% | 热值/ (MJ/kg) | 元素分析/% | 硫分析/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
水分 | 固定碳 | 挥发分 | 灰分 | C | H | O | N | S | 硫化铁硫 | 硫酸盐硫 | 有机硫 | |
0.5 | 88.613 | 10.995 | 0.392 | 34.4 | 86.372 | 3.762 | 1.686 | 0.945 | 6.843 | 0.6843 | 0.3422 | 5.8165 |
Fe2O3 | Al2O3 | SiO2 | CaO | P2O5 | MgO | Na2O | K2O | CaSO4 |
---|---|---|---|---|---|---|---|---|
83.21 | 5.13 | 7.06 | 0.24 | 0.38 | 1.25 | 1.26 | 1.26 | 0.21 |
表2 赤铁矿石的化学组成
Table 2 Chemical components of iron ore/%(mass)
Fe2O3 | Al2O3 | SiO2 | CaO | P2O5 | MgO | Na2O | K2O | CaSO4 |
---|---|---|---|---|---|---|---|---|
83.21 | 5.13 | 7.06 | 0.24 | 0.38 | 1.25 | 1.26 | 1.26 | 0.21 |
1 | Zou J H , Zhou Z J , Wang F C , et al . Modeling reaction kinetics of petroleum coke gasification with CO2 [J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(7): 630-636. |
2 | Twomey C , Birkinshaw C , Breen S . The identity of the sulfur-containing phases present in cement clinker manufactured using a high sulfur petroleum coke fuel [J]. Journal of Chemical Technology & Biotechnology, 2004, 79(5): 486-490. |
3 | Zhou Z J , Hu Q J , Liu X , et al . Effect of iron species and calcium hydroxide on high-sulfur petroleum coke CO2 gasification [J]. Energy & Fuels, 2012, 26(3): 1489-1495. |
4 | Yin S Y , Shen L H , Dosta M , et al . Chemical looping gasification of a biomass pellet with a manganese ore as an oxygen carrier in the fluidized bed [J]. Energy & Fuels, 2018, 32(11): 11674-11682. |
5 | Song T , Shen L H , Xiao J , et al . Evaluation of hematite oxygen carrier in chemical-looping combustion of coal [J]. Fuel, 2013, 104(2): 244-252. |
6 | Wang L L , Shen L H , Liu W D , et al . Chemical looping hydrogen generation using synthesized hematite-based oxygen carrier comodified by potassium and copper [J]. Energy & Fuels, 2017, 31(8): 8423-8433. |
7 | Tian X , Niu P J , Ma Y X , et al . Chemical-looping gasification of biomass(Ⅱ): Tar yields and distributions [J]. Biomass and Bioenergy, 2018, 108: 178-189. |
8 | Niu P J , Ma Y X , Tian X , et al . Chemical looping gasification of biomass(Ⅰ): Screening Cu-Fe metal oxides as oxygen carrier and optimizing experimental conditions [J]. Biomass & Bioenergy, 2018, 108: 146-156. |
9 | Song T , Hartge E U , Heinrich S , et al . Chemical looping combustion of high sodium lignite in the fluidized bed: combustion performance and sodium transfer [J]. International Journal of Greenhouse Gas Control, 2018, 70: 22-31. |
10 | Song T , Shen L H . Review of reactor for chemical looping combustion of solid fuels [J]. International Journal of Greenhouse Gas Control, 2018, 76: 92-110. |
11 | 殷上轶, 宋涛 . CO2气氛下准东煤化学链燃烧特性研究 [J]. 化工学报, 2018, 69(9): 3954-3964. |
Yin S Y , Song T . Zhundong coal chemical looping combustion performance using CO2 as gasification agent [J]. CIESC Journal, 2018, 69(9): 3954-3964. | |
12 | Guo Q J , Cheng Y , Liu Y Z , et al . Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier [J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 78-86. |
13 | Guo Q J , Hu X D , Liu Y Z , et al . Coal chemical-looping gasification of Ca-based oxygen carriers decorated by CaO [J]. Powder Technology, 2015, 275: 60-68. |
14 | Zhen H , Fang H , Feng Y P , et al . Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier [J]. Bioresource Technology, 2013, 140(140C): 138-145. |
15 | Wang K , Yu Q B , Qin Q , et al . Thermodynamic analysis of syngas generation from biomass using chemical looping gasification method [J]. International Journal of Hydrogen Energy, 2016, 41(24): 10346-10353. |
16 | Zeng J M , Xiao R , Zhang H Y , et al . Chemical looping pyrolysis-gasification of biomass for high H2/CO syngas production [J]. Fuel Processing Technology, 2017, 168: 116-122. |
17 | Liu Y Z , Guo Q J . Investigation into syngas generation from solid fuel using CaSO4-based chemical looping gasification process [J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 127-134. |
18 | Piéplu A , Saur O , Lavalley J C , et al . Claus catalysis and H2S selective oxidation [J]. Catalysis Reviews, 1998, 40(4): 409-450. |
19 | Elsner M P , Menge M , Muller C , et al . The Claus process: teaching an old dog new tricks [J]. Catalysis Today, 2003, 79(1/2/3/4): 487-494. |
20 | Wu Y Q , Wu S Y , Gu J , et al . Differences in physical properties and CO2 gasification reactivity between coal char and petroleum coke [J]. Process Safety and Environmental Protection, 2009, 87(5): 323-330. |
21 | Fan X L , Yu Z H . Stufy on influence of pyrolysis conditions on char gasification reactivity [J]. Coal Conversion, 2005, 28(4): 74-79. |
22 | Gopaul S G , Dutta A , Clemmer R . Chemical looping gasification for hydrogen production: a comparison of two unique processes simulated using aspen plus [J]. International Journal of Hydrogen Energy, 2014, 39(11): 5804-5817. |
23 | Pala L P R , Wang Q , Kolb G , et al . Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: an Aspen Plus model [J]. Renewable Energy, 2017, 101: 484-492. |
24 | 杨毅梅, 陈文义, 范晓旭, 等 . 基于Aspen Plus的生物质气化模拟与分析 [J]. 河北工业大学学报, 2011, 40(5): 49-52. |
Yang Y M , Chen W Y , Fan X X , et al . Aspen Plus-based numerical simulation and analysis of biomass gasification [J]. Journal of Hebei University of Technology, 2011, 40(5): 49-52. | |
25 | Wei G Q , He F , Huang Z , et al . Continuous operation of a 10 kWth chemical looping integrated fluidized bed reactor for gasifying biomass using an iron-based oxygen carrier [J]. Energy & Fuels, 2015, 29(1): 233-241. |
26 | Ge H J , Guo W J , Shen L H , et al . Biomass gasification using chemical looping in a 25 kWth reactor with natural hematite as oxygen carrier [J]. Chemical Engineering Journal, 2016, 286: 174-183. |
27 | Ge H J , Guo W J , Shen L H , et al . Experimental investigation on biomass gasification using chemical looping in a batch reactor and a continuous dual reactor [J]. Chemical Engineering Journal, 2016, 286: 689-700. |
28 | Nikoo M B , Mahinpey N . Simulation of biomass gasification in fluidized bed reactor using Aspen Plus[J]. Biomass and Bioenergy, 2008, 32(12): 1245-1254. |
29 | Begum S , Rasul M G , Akbar D . A numerical investigation of municipal solid waste gasification using aspen plus [J]. Procedia Engineering, 2014, 90: 710-717. |
30 | Chen Y G , Galinsky N , Wang Z R , et al . Investigation of perovskite supported composite oxides for chemical looping conversion of syngas [J]. Fuel, 2014, 134: 521-530. |
31 | Garcíalabiano F , Diego L F D , Gayán P , et al . Effect of fuel gas composition in chemical-looping combustion with Ni-based oxygen carriers (1): Fate of sulfur [J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 2499-2508. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[10] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[11] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[12] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[13] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[14] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[15] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||