1 |
Park J H, Park H S, Kwon J G, et al. Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors[J]. Energy, 2018, 160: 520-535.
|
2 |
Walnum H T, Nekså P, Nord L O, et al. Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions[J]. Energy, 2013, 59: 513-520.
|
3 |
Abram T, Ion S. Generation-Ⅳ nuclear power: a review of the state of the science[J]. Energy Policy, 2008, 36(12): 4323-4330.
|
4 |
Turchi C S, Ma Z W, Neises T W, et al. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems[J]. Journal of Solar Energy Engineering, 2013, 135(4): 041007.
|
5 |
Kimball K J, Clementoni E M. Supercritical carbon dioxide brayton power cycle development overview[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen, Denmark, 2013: 931-940.
|
6 |
Fairuz Z M, Jahn I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals[J]. Tribology International, 2016, 102: 333-347.
|
7 |
Vesovic V, Wakeham W A, Olchowy G A, et al. The transport properties of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1990, 19(3): 763-808.
|
8 |
Constantinescu V N. On turbulent lubrication[J]. Proceedings of the Institution of Mechanical Engineers, 1959, 173(1): 881-900.
|
9 |
Constantinescu V N. Analysis of bearings operating in turbulent regime[J]. Journal of Basic Engineering, 1962, 84(1): 139-151.
|
10 |
Constantinescu V N. On gas lubrication in turbulent regime[J]. Journal of Basic Engineering, 1964, 86(3): 475-482.
|
11 |
Ng C W. Fluid dynamic foundation of turbulent lubrication theory[J]. A S L E Transactions, 1964, 7(4): 311-321.
|
12 |
Ng C W, Pan C H T. A linearized turbulent lubrication theory[J]. Journal of Basic Engineering, 1965, 87(3): 675-682.
|
13 |
Elrod H G, Ng C W. A theory for turbulent fluid films and its application to bearings[J]. Journal of Lubrication Technology, 1967, 89(3): 346-362.
|
14 |
Hirs G G. A bulk-flow theory for turbulence in lubricant films[J]. Journal of Lubrication Technology, 1973, 95(2): 137-145.
|
15 |
Simon F, Frêne J. Analysis for incompressible flow in annular pressure seals[J]. Journal of Tribology, 1992, 114(3): 431-438.
|
16 |
Brunetière N, Tournerie B, Frêne J. Influence of fluid flow regime on performances of non-contacting liquid face seals[J]. Journal of Tribology, 2002, 124(3): 515-523.
|
17 |
徐林. 湍流工况下泵的环状间隙密封内流场分析及泄漏量计算[J]. 水泵技术, 2002, (2):17-20.
|
|
Xu L. Flow field analysis and leakage calculation in annular clearance seals of pumps under turbulent flow condition[J]. Pump Technology, 2002, (2):17-20.
|
18 |
张新敏, 夏延秋, 王世杰, 等. 一种湍流润滑理论分析的工程计算方法[J]. 润滑与密封, 2002, 27(2): 4-6.
|
|
Zhang X M, Xia Y Q, Wang S J, et al. An engineering algorithm for turbulent lubrication theory[J]. Lubrication Engineering, 2002, 27(2): 4-6.
|
19 |
Brunetière N. A modified turbulence model for low Reynolds numbers: applications to hydrostatic seals[C]//Proceedings of ASME/STLE 2004 International Joint Tribology Conference. Long Beach, California, USA, 2004: 503-515.
|
20 |
刘珂, 刘莹, 刘向锋. 端面流体动压密封中一种新的湍流计算模型[J]. 润滑与密封, 2006, 31(10): 110-112.
|
|
Liu K, Liu Y, Liu X F. New turbulent lubrication model in hydrodynamic face seal[J]. Lubrication Engineering, 2006, 31(10): 110-112.
|
21 |
Brunetière N, Tournerie B. Finite element solution of inertia influenced flow in thin fluid films[J]. Journal of Tribology, 2007, 129(4): 876-886.
|
22 |
张肖寒, 孟祥铠, 梁杨杨, 等. 基于湍流模型的高速螺旋槽机械密封稳态性能研究[J]. 摩擦学学报, 2020, 40(2): 260-270.
|
|
Zhang X H, Meng X K, Liang Y Y, et al. Steady performance on high speed spiral-grooved mechanical seals based on turbulent model[J]. Tribology, 2020, 40(2): 260-270.
|
23 |
Thatte A, Zheng X Q. Hydrodynamics and sonic flow transition in dry gas seals[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf, Germany, 2014.
|
24 |
许恒杰, 宋鹏云, 毛文元, 等. 层流状态下高压高转速二氧化碳干气密封的惯性效应分析[J]. 化工学报, 2018, 69(10): 4311-4323.
|
|
Xu H J, Song P Y, Mao W Y, et al. Analysis on inertia effect of carbon dioxide dry gas seal at high speed and pressure under laminar condition[J]. CIESC Journal, 2018, 69(10): 4311-4323.
|
25 |
沈伟, 彭旭东, 江锦波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659.
|
|
Shen W, Peng X D, Jiang J B, et al. Analysis on real effect of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC Journal, 2019, 70(7): 2645-2659.
|
26 |
Du Q W, Zhang D. Research on the performance of supercritical CO2 dry gas seal with different deep spiral groove[J]. Journal of Thermal Science, 2019, 28(3): 547-558.
|
27 |
Xu H J, Song P Y, Mao W Y, et al. The performance of spiral groove dry gas seal under choked flow condition considering the real gas effect[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234(4): 554-566.
|
28 |
严如奇, 洪先志, 包鑫, 等. 超临界二氧化碳干气密封相态分布规律与密封性能研究[J]. 化工学报, 2020, 71(8): 3681-3690.
|
|
Yan R Q, Hong X Z, Bao X, et al. Phase-distribution regularity and sealing performance of supercritical carbon dioxide dry gas seal[J]. CIESC Journal, 2020, 71(8): 3681-3690.
|
29 |
沈伟. 高参数干气密封的惯性与湍流效应影响分析与型槽设计[D]. 杭州: 浙江工业大学, 2019.
|
|
Shen W. Surface groove design and inertia effect and turbulent effect analysis of high parameter dry gas seal[D]. Hangzhou: Zhejiang University of Technology, 2019.
|
30 |
江锦波, 滕黎明, 孟祥铠, 等. 基于多变量摄动的超临界CO2干气密封动态特性 [J]. 化工学报, 2021, 72(4): 2190-2202.
|
|
Jiang J B, Teng L M Meng X K, et al. Dynamic characteristics of supercritical CO2 dry gas seal based on multi variables perturbation [J]. CIESC Journal, 2021, 72(4): 2190-2202.
|
31 |
Armin L, Andreas F, Benjamin H. Development and testing of dry gas seals for turbomachinery in multiphase CO2 applications [C]// 3rd European supercritical CO2 Conference. Paris, France, 2019:1-11.
|
32 |
Taylor C M, Dowson D. Turbulent lubrication theory—application to design[J]. Journal of Lubrication Technology, 1974, 96(1): 36-46.
|
33 |
张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 2版. 北京: 清华大学出版社, 2017.
|
|
Zhang Z S, Cui G X, Xu C X. Theory and Modeling of Turbulence[M]. 2nd ed. Beijing: Tsinghua University Press, 2017.
|
34 |
傅德薰, 马延文, 李新亮. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.
|
|
Fu D X, Ma Y W, Li X L. Direct Numerical Simulation of Compressible Turbulence [M]. Beijing: Science Press, 2010.
|
35 |
Du Q W, Gao K K, Zhang D, et al. Effects of grooved ring rotation and working fluid on the performance of dry gas seal[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1323-1332.
|
36 |
Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.
|
37 |
Fenghour A, Wakeham W A, Vesovic V. The viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1998, 27(1): 31-44.
|
38 |
潘锦珊, 单鹏, 刘火星. 气体动力学基础[M]. 北京: 国防工业出版社, 2012.
|
|
Pan J S, Shan P, Liu H X. Fundamentals of Gasdynamics[M]. Beijing: National Defense Industry Press, 2012.
|
39 |
Thomas S, Brunetiere N, Toumerie B. Numerical modeling of high pressure gas face seals [J]. Journal of Tribology-Transactions of the ASME, 2006,128: 396-405.
|
40 |
Gabriel R P. Fundamentals of spiral groove noncontacting face seals [J]. Lubrication Engineering, 1994, 50(3): 215-224.
|