化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4410-4417.doi: 10.11949/0438-1157.20201790

• 材料化学工程与纳米技术 • 上一篇    下一篇

合成次数及硅铝比调控SAPO-34分子筛膜的乙醇脱水性能

丁婉月(),马晓华()   

  1. 化学工程联合国家重点实验室,华东理工大学膜科学与工程研发中心,上海 200237
  • 收稿日期:2020-12-10 修回日期:2021-06-05 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 马晓华 E-mail:d80757743@163.com;xiaohuama@ecust.edu.cn
  • 作者简介:丁婉月(1996—),女,硕士研究生,d80757743@163.com
  • 基金资助:
    国家自然科学基金项目(21978081)

Effects of synthesis times and Si-Al ratio of SAPO-34 zeolite membrane on ethanol dehydration performance

Wanyue DING(),Xiaohua MA()   

  1. State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Laboratory, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
  • Received:2020-12-10 Revised:2021-06-05 Published:2021-08-05 Online:2021-08-05
  • Contact: Xiaohua MA E-mail:d80757743@163.com;xiaohuama@ecust.edu.cn

摘要:

SAPO-34分子筛膜因其独特的孔道结构和优异的稳定性被广大学者所青睐,目前的研究大多集中在催化、吸附和气体分离等方面,而关于其在液体分离中的研究鲜少报道。本文在Al2O3中空纤维支撑体表面分别一次和二次合成制备了SAPO-34分子筛膜,考察了四种不同硅铝比对SAPO-34分子筛膜结构形貌和性能的影响,并用于乙醇溶液的渗透汽化脱水,考察了操作温度、原料液中乙醇浓度以及分子筛合成次数对分离效果的影响。研究结果表明,硅铝比为0.5的二次合成的SAPO-34分子筛膜具有连续而致密的分离层和良好的渗透汽化分离性能,60℃下对乙醇(90%)-水(10%)的分离因子可以达到1170,渗透通量为0.9 kg/(m2·h)。

关键词: 硅铝比, 二次生长法, SAPO-34分子筛膜, 渗透汽化, 乙醇脱水

Abstract:

SAPO-34 zeolite membrane has been favored by many scholars because of its unique pore structure and excellent stability. Most of the studies focused on catalysis, adsorption and gas separation, while there are few studies on liquid separation. In this paper, SAPO-34 zeolite membranes were prepared through primary and secondary synthesis on the surface of Al2O3 hollow fiber support, respectively. The effects of four different Si-Al ratios on the structure and performance of the SAPO-34 zeolite membranes were investigated. The obtained membranes were used for the pervaporation dehydration of ethanol solution. The effects of operating temperature, ethanol concentration and synthesis times on the separation properties of the obtained membranes were investigated. The results showed that the SAPO-34 zeolite membrane with Si-Al ratio of 0.5 and secondary synthesis had a continuous and dense separation layer, resulting in the best pervaporation performance. The separation factor of ethanol (90%) - water (10%) at 60℃ was 1170, and the flux was 0.9 kg/(m2·h).

Key words: Si-Al ratio, secondary growth method, SAPO-34 zeolite membrane, pervaporation, ethanol dehydration

中图分类号: 

  • TQ 028.8

图1

SAPO-34分子筛膜及Al2O3中空纤维支撑体的SEM图像"

图2

四种不同硅铝比的二次合成后的SAPO-34分子筛膜的表面SEM图像"

图3

SAPO-34分子筛粉末、SAPO-34分子筛膜及基膜的XRD谱图"

图4

一次合成的SAPO-34分子筛膜渗透汽化性能"

图5

二次合成的SAPO-34分子筛膜渗透汽化性能"

图6

温度对SAPO-34分子筛膜的渗透汽化性能的影响"

图7

SAPO-34分子筛膜渗透汽化过程中的通量随温度变化"

图8

原料液浓度对SAPO-34分子筛膜的渗透汽化性能的影响"

图9

SAPO-34分子筛膜在乙醇(90%)-水(10%)体系中的渗透汽化性能随时间变化的关系"

1 谢博远, 马晓华, 许振良. MOFs与碳纳米管双重改性渗透汽化复合膜及其性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 608-612.
Xie B Y, Ma X H, Xu Z L. MOFs and carbon nanotubes double modified pervaporation composite membrane and its properties[J]. Journal of East China University of Science and Technology, 2020, 46(5): 608-612.
2 王洋, 庄黎伟, 马晓华, 等. 中空纤维膜渗透汽化过程中Dean涡强化传质的CFD模拟[J]. 化工学报, 2018, 69(11): 4655-4662.
Wang Y, Zhuang L W, Ma X H, et al. CFD simulation of Dean vortex enhanced mass transfer in hollow fiber membrane pervaporation[J]. CIESC Journal, 2018, 69(11): 4655-4662.
3 仲华, 谢浩然, 马晓华, 等. UIO-66-NH2渗透汽化复合膜制备及乙醇脱水[J]. 膜科学与技术, 2019, 39(3): 79-86.
Zhong H, Xie H R, Ma X H, et al. Preparation of UIO-66-NH2 pervaporation composite membrane and its application in dehydration of ethanol[J]. Membrane Science and Technology, 2019, 39(3): 79-86.
4 Magalad V T, Gokavi G S, Nadagouda M N, et al. Pervaporation separation of water-ethanol mixtures using organic-inorganic nanocomposite membranes[J]. The Journal of Physical Chemistry C, 2011, 115(30): 14731-14744.
5 韩小龙, 张杏梅, 马晓迅, 等. 碳纳米管填充PDMS膜的渗透汽化性能[J]. 化工学报, 2014, 65(1): 271-278.
Han X L, Zhang X M, Ma X X, et al. Pervaporation performance of carbon nanotube filled PDMS membranes[J]. CIESC Journal, 2014, 65(1): 271-278.
6 Han Y J, Wang K H, Lai J Y, et al. Hydrophilic chitosan-modified polybenzoimidazole membranes for pervaporation dehydration of isopropanol aqueous solutions[J]. Journal of Membrane Science, 2014, 463: 17-23.
7 Lok B M, Messina C A, Patton R L, et al. Crystalline silicoaluminophosphates: US4440871[P]. 1984-04-03.
8 Han L, Guo L L, Xue S Z, et al. Polyacrylamide-assisted synthesis of hierarchical porous SAPO-34 zeolites with excellent MTO catalytic performance[J]. Microporous and Mesoporous Materials, 2021, 311: 110676.
9 Wang Y, Gao J Q, Dong L, et al. Tuning SAPO-34 with a tailor-designed zwitterionic amino acid for improved MTO performance[J]. Microporous and Mesoporous Materials, 2021, 310: 110590.
10 Yang G J, Han J, Huang Y J, et al. Busting the efficiency of SAPO-34 catalysts for the methanol-to-olefin conversion by post-synthesis methods[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2022-2027.
11 Akhgar S, Towfighi J, Hamidzadeh M. MTO performance over seed-assisted SAPO-34 zeolites synthesized by reducing template consumption[J]. Journal of Materials Research and Technology, 2020, 9(6): 12126-12136.
12 Erucar I, Keskin S. Computational assessment of MOF membranes for CH4/H2 separations[J]. Journal of Membrane Science, 2016, 514: 313-321.
13 Kosinov N, Gascon J, Kapteijn F, et al. Recent developments in zeolite membranes for gas separation[J]. Journal of Membrane Science, 2016, 499: 65-79.
14 Huang Y, Wang L, Song Z N, et al. Growth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high-aspect-ratio seeds[J]. Angewandte Chemie International Edition, 2015, 54(37): 10843-10847.
15 Jiang J, Islam S, Dong Q B, et al. Deposition of an ultrathin palladium (Pd) coating on SAPO-34 membranes for enhanced H2/N2 separation[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33648-33656.
16 Rehman R U, Song Q N, Peng L, et al. A facile coating to intact SAPO-34 membranes for wet CO2/CH4 mixture separation[J]. Chemical Engineering Research and Design, 2020, 153: 37-48.
17 Makertihartha I G B N, Kencana K S, Dwiputra T R, et al. Silica supported SAPO-34 membranes for CO2/N2 separation[J]. Microporous and Mesoporous Materials, 2020, 298: 110068.
18 宋庆南, 张玉亭, 张春, 等. 二乙胺导向合成中空纤维负载型SAPO-34分子筛膜[J]. 化工学报, 2019, 70(6): 2316-2324.
Song Q N, Zhang Y T, Zhang C, et al. Diethylamine template-directed synthesis of hollow fiber supported SAPO-34 membranes[J]. CIESC Journal, 2019, 70(6): 2316-2324.
19 郝阿辉, 刘晓红, 刘秀凤, 等. 微波辅助二次生长法合成SAPO-34分子筛膜与关键影响因素[J]. 化工学报, 2017, 68(2): 716-722.
Hao A H, Liu X H, Liu X F, et al. Synthesis of SAPO-34 membranes and critical influence factors in microwave-assisted secondary growth[J]. CIESC Journal, 2017, 68(2): 716-722.
20 Alam S F, Kim M Z, Kim Y J, et al. A new seeding method, dry rolling applied to synthesize SAPO-34 zeolite membrane for nitrogen/methane separation[J]. Journal of Membrane Science, 2020, 602: 117825.
21 Chen Y, Zhang Y T, Zhang C, et al. Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four-channel hollow fibers for CO2 capture from CH4[J]. Journal of CO2 Utilization, 2017, 18: 30-40.
22 Mohammadi T, Asarehpour S, Samei M. Effects of synthesis temperature and support material on CO2 and CH4 permeation through SAPO-34 membranes[J]. Separation Science and Technology, 2012, 47(16): 2320-2330.
23 陈阳, 张玉亭, 张春, 等. 中空纤维SAPO-34分子筛膜的制备及渗透汽化性能[J]. 南京工业大学学报(自然科学版), 2018, 40(1): 46-51.
Chen Y, Zhang Y T, Zhang C, et al. Preparation and pervaporation performance of hollow fiber supported SAPO-34 zeolite membranes[J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(1): 46-51.
24 Baker R W, Wijmans J G, Huang Y. Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data[J]. Journal of Membrane Science, 2010, 348(1/2): 346-352.
25 吴琦刚, 韶晖, 钟璟, 等. Sn-silicalite-2分子筛膜的制备及其渗透汽化性能研究[J]. 现代化工, 2019, 39(12): 94-99.
Wu Q G, Shao H, Zhong J, et al. Synthesis of Sn-silicalite-2 molecular sieve membrane and study on its pervaporation performance[J]. Modern Chemical Industry, 2019, 39(12): 94-99.
26 Ahn S H, Yu X W, Manthiram A. “Wiring” Fe-nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media[J]. Advanced Materials, 2017, 29(26): 1606534.
[1] 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030.
[2] 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402.
[3] 方丽君, 王景梅, 林巧靖, 陈建华, 杨谦. 二苯并-18-冠醚-6/聚醚嵌段酰胺膜富集水中苯酚性能研究[J]. 化工学报, 2021, 72(7): 3716-3727.
[4] 李子祎,潘恩泽,王佳轩,鲁金明,杨建华. ZSM-5沸石分子筛膜的制备及脱盐性能研究[J]. 化工学报, 2021, 72(10): 5247-5256.
[5] 左成业, 涂睿, 丁晓斌, 邢卫红. PDMS复合膜回收酯化反应废水中的异丁醇[J]. 化工学报, 2020, 71(9): 4189-4199.
[6] 马珊宏, 叶枫, 王燕鸿, 郎雪梅, 樊栓狮, 李刚. ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究[J]. 化工学报, 2020, 71(7): 3345-3353.
[7] 金浩, 陆佳伟, 汤吉海, 张竹修, 费兆阳, 刘清, 陈献, 崔咪芬, 乔旭. 带侧线反应精馏-渗透汽化生产乙酸乙酯集成过程模拟与分析[J]. 化工学报, 2018, 69(8): 3469-3478.
[8] 岳东敏, 张欠之, 孙德, 李冰冰, 毛钦烨, 彭从康. PVA/SO42--AAO催化-渗透汽化双功能复合膜合成乙酸乙酯[J]. 化工学报, 2018, 69(6): 2775-2781.
[9] 张杏梅, 胡文玲, 孙鹤翔, 韩小龙, 王玉琪. 活性炭填充PEG/PVDF杂化膜的脱硫性能[J]. 化工学报, 2018, 69(2): 866-872.
[10] 王洋, 庄黎伟, 马晓华, 许振良, 王志. 中空纤维膜渗透汽化过程中Dean涡强化传质的CFD模拟[J]. 化工学报, 2018, 69(11): 4655-4662.
[11] 王倩, 张新儒, 王永洪, 侯蒙杰, 张桃, 李龙, 刘成岑. 渗透汽化-结晶耦合分离稀溶液中的香兰素[J]. 化工学报, 2017, 68(8): 3126-3132.
[12] 邵光印, 张玉龙, 张征湃, 张俊, 苏俊杰, 刘达, 赫崇衡, 徐晶, 韩一帆. 不同硅铝比ZSM-5负载铁基催化剂二氧化碳加氢性能[J]. 化工学报, 2017, 68(2): 670-678.
[13] 郝阿辉, 刘晓红, 刘秀凤, 张宝泉. 微波辅助二次生长法合成SAPO-34分子筛膜与关键影响因素[J]. 化工学报, 2017, 68(2): 716-722.
[14] 那沙沙, 李卫星, 邢卫红. 无机杂化海藻酸钠渗透汽化膜的制备与分离性能对比[J]. 化工学报, 2016, 67(9): 3730-3737.
[15] 赵祯霞, 许锋, 李忠. 二次生长法制备ZIF-8膜及其对CO2/N2的分离性能[J]. 化工学报, 2014, 65(5): 1673-1679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!