1 |
刘海波, 王成辉, 周茜, 等. 石墨烯在金属基复合材料中的应用研究与进展[J]. 热加工工艺, 2020, 49(24): 8-14, 20.
|
|
Liu H B, Wang C H, Zhou Q, et al. Application research and progress of graphene in metal matrix composite[J]. Hot Working Technology, 2020, 49(24): 8-14, 20.
|
2 |
陈站, 刘晓国, 宋松林, 等. 石墨烯及氧化石墨烯应用在电性能涂料中的研究进展[J]. 电镀与涂饰, 2020, 39(10): 660-664.
|
|
Chen Z, Liu X G, Song S L, et al. Research progress on applications of graphene and graphene oxide in electrical coatings[J]. Electroplating & Finishing, 2020, 39(10): 660-664.
|
3 |
覃荣华, 曾丹林, 王荣, 等. 石墨烯基催化材料的制备及其应用研究进展[J]. 化工新型材料, 2020, 48(12): 29-33.
|
|
Qin R H, Zeng D L, Wang R, et al. Review in preparation and application of rGO-based catalytic material[J]. New Chemical Materials, 2020, 48(12): 29-33.
|
4 |
Xia D, Li H, Mannering J, et al. Electrically heatable graphene aerogels as nanoparticle supports in adsorptive desulfurization and high-pressure CO2 capture[J]. Advanced Functional Materials, 2020, 30(40): 2002788.
|
5 |
Cheng C, Li S, Thomas A, et al. Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications[J]. Chemical Reviews, 2017, 117(3): 1826-1914.
|
6 |
Li J S, Wang Y, Liu C H, et al. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution[J]. Nature Communications, 2016, 7: 11204.
|
7 |
Sriwong C, Choojun K, Kongtaweelert S. Investigation of the influences of reaction temperature and time on the chemical reduction of graphene oxide by conventional method using vitamin C as a reducing agent[J]. Materials Science Forum, 2017, 909: 225-230.
|
8 |
Liu Y J, Li P, Wang F, et al. Rapid roll-to-roll production of graphene films using intensive Joule heating[J]. Carbon, 2019, 155: 462-468.
|
9 |
Ren L, Wang M, Lu S, et al. Tailoring thermal transport properties of graphene paper by structural engineering[J]. Scientific Reports, 2019, 9(1): 4549.
|
10 |
安飞, 孙冰, 李娜, 等. 三维石墨烯的制备及其在电阻型气体传感器领域的应用[J]. 材料工程, 2020, 48(12): 24-35.
|
|
An F, Sun B, Li N, et al. Research on the fabrication of 3D graphene and its application in chemiresistive gas sensors[J]. Journal of Materials Engineering, 2020, 48(12): 24-35.
|
11 |
Shehzad K, Xu Y, Gao C, et al. Three-dimensional macro-structures of two-dimensional nanomaterials[J]. Chemical Society Reviews, 2016, 45(20): 5541-5588.
|
12 |
Perreault F, Fonseca de Faria A, Elimelech M. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews, 2015, 44(16): 5861-5896.
|
13 |
Yousefi N, Lu X L, Elimelech M, et al. Environmental performance of graphene-based 3D macrostructures[J]. Nature Nanotechnology, 2019, 14(2): 107-119.
|
14 |
Zhang X T, Sui Z Y, Xu B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry, 2011, 21(18): 6494-6497.
|
15 |
Zhou G H, Kim N R, Chun S E, et al. Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors[J]. Carbon, 2018, 130: 137-144.
|
16 |
Han Z, Tang Z, Li P, et al. Ammonia solution strengthened three-dimensional macro-porous graphene aerogel[J]. Nanoscale, 2013, 5(12): 5462-5467.
|
17 |
Zhang Q Q, Wang Y, Zhang B Q, et al. 3D superelastic graphene aerogel-nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes[J]. Carbon, 2018, 127: 449-458.
|
18 |
Fu Y, Wang G, Mei T, et al. Accessible graphene aerogel for efficiently harvesting solar energy[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4665-4671.
|
19 |
Deerattrakul V, Yigit N, Rupprechter G, et al. The roles of nitrogen species on graphene aerogel supported Cu-Zn as efficient catalysts for CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2019, 580: 46-52.
|
20 |
Barg S, Perez F M, Ni N, et al. Mesoscale assembly of chemically modified graphene into complex cellular networks[J]. Nature Communications, 2014, 5: 4328.
|
21 |
Zhu C, Han T Y, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications, 2015, 6: 6962.
|
22 |
Wu Z S, Winter A, Chen L, et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J]. Advanced Materials, 2012, 24(37): 5130-5135.
|
23 |
Li J, Li J, Meng H, et al. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J]. Journal of Materials Chemistry A, 2014, 2(9): 2934-2941.
|
24 |
Menzel R, Barg S, Miranda M, et al. Joule heating characteristics of emulsion-templated graphene aerogels[J]. Advanced Functional Materials, 2015, 25(1): 28-35.
|
25 |
Xia D, Li H, Huang P. Understanding the Joule-heating behaviours of electrically-heatable carbon-nanotube aerogels[J]. Nanoscale Advances, 2021, 3(3): 647-652.
|
26 |
Xia D, Li H, Huang P, et al. Boron-nitride/carbon-nanotube hybrid aerogels as multifunctional desulfurisation agents[J]. Journal of Materials Chemistry A, 2019, 7(41): 24027-24037.
|
27 |
Liu T, Huang M L, Li X F, et al. Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J]. Carbon, 2016, 100: 456-464.
|
28 |
Li T, Pickel A D, Yao Y G, et al. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3, 000 K[J]. Nature Energy, 2018, 3(2): 148-156.
|
29 |
Hong J Y, Sohn E H, Park S, et al. Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel[J]. Chemical Engineering Journal, 2015, 269: 229-235.
|
30 |
Xia D, Huang P, Li H, et al. Fast and efficient electrical-thermal responses of functional nanoparticle decorated nanocarbon aerogels[J]. Chemical Communications, 2020, 56(92): 14393-14396.
|
31 |
Bao W Z, Pickel A D, Zhang Q, et al. Flexible, high temperature, planar lighting with large scale printable nanocarbon paper[J]. Advanced Materials, 2016, 28(23): 4684-4691.
|
32 |
Wang K, Zeng Y J, Lin W Z, et al. Energy-efficient catalytic removal of formaldehyde enabled by precisely Joule-heated Ag/Co3O4@mesoporous-carbon monoliths[J]. Carbon, 2020, 167: 709-717.
|
33 |
Xia D, Xu Y F, Mannering J, et al. Tuning the electrical and solar thermal heating efficiencies of nanocarbon aerogels[J]. Chemistry of Materials, 2021, 33(1): 392-402.
|