化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3488-3510.DOI: 10.11949/0438-1157.20210269
王绍宇1,2(),马翰泽1,2(),吴洪1,2,梁旭1,2,王洪建1,2,朱姿亭1,2,姜忠义1,2,3()
收稿日期:
2021-02-19
修回日期:
2021-04-25
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
姜忠义
作者简介:
王绍宇(1998—),男,硕士研究生,基金资助:
WANG Shaoyu1,2(),MA Hanze1,2(),WU Hong1,2,LIANG Xu1,2,WANG Hongjian1,2,ZHU Ziting1,2,JIANG Zhongyi1,2,3()
Received:
2021-02-19
Revised:
2021-04-25
Online:
2021-07-05
Published:
2021-07-05
Contact:
JIANG Zhongyi
摘要:
高渗透性、高选择性和高稳定性的膜材料是决定膜分离过程效率的关键。有机框架膜(organic framework membranes,OFMs)具有孔隙率高、孔道长程有序、易于官能化修饰、稳定性强等特点,在气体膜分离领域具有重要发展前景。综述了有机框架膜的化学组成、结构特征、制备方法及其在二氧化碳捕集与分离、烯烃/烷烃分离及稀有气体分离等气体分离过程中的应用。最后,对有机框架膜在气体分离领域的机遇和挑战进行了总结,并对其发展方向进行了展望。
中图分类号:
王绍宇, 马翰泽, 吴洪, 梁旭, 王洪建, 朱姿亭, 姜忠义. 有机框架膜在气体分离中的研究进展[J]. 化工学报, 2021, 72(7): 3488-3510.
WANG Shaoyu, MA Hanze, WU Hong, LIANG Xu, WANG Hongjian, ZHU Ziting, JIANG Zhongyi. Research advances of organic framework membranes in gas separation[J]. CIESC Journal, 2021, 72(7): 3488-3510.
1 | Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663. |
2 | Bernardo G, Araújo T, da Silva Lopes T, et al. Recent advances in membrane technologies for hydrogen purification[J]. International Journal of Hydrogen Energy, 2020, 45(12): 7313-7338. |
3 | Chuah C, Goh K, Yang Y Q, et al. Harnessing filler materials for enhancing biogas separation membranes[J]. Chemical Reviews, 2018, 118(18): 8655-8769. |
4 | Wang S, Li X, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
5 | Ren Y X, Liang X, Dou H Z, et al. Membrane-based olefin/paraffin separations[J]. Advanced Science, 2020, 7(19): 2001398. |
6 | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
7 | Freeman B D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32(2): 375-380. |
8 | Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. |
9 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
10 | Liu Y Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates[J]. Microporous and Mesoporous Materials, 2009, 118(1/2/3): 296-301. |
11 | Huang A S, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. Journal of the American Chemical Society, 2010, 132(44): 15562-15564. |
12 | Zhang F, Zou X Q, Gao X, et al. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability[J]. Advanced Functional Materials, 2012, 22(17): 3583-3590. |
63 | Jiang J X, Su F B, Trewin A, et al. Conjugated microporous poly(aryleneethynylene) networks[J]. Angewandte Chemie International Edition, 2008, 47(7): 1167. |
64 | Jiang J X, Trewin A, Adams D J, et al. Band gap engineering in fluorescent conjugated microporous polymers[J]. Chemical Science, 2011, 2(9): 1777-1781. |
65 | Lee J S M, Cooper A I. Advances in conjugated microporous polymers[J]. Chemical Reviews, 2020, 120(4): 2171-2214. |
66 | Liu Q Q, Tang Z, Wu M D, et al. Design, preparation and application of conjugated microporous polymers[J]. Polymer International, 2014, 63(3): 381-392. |
67 | Sun C J, Zhao X Q, Wang P F, et al. Thiophene-based conjugated microporous polymers: synthesis, characterization and efficient gas storage[J]. Science China Chemistry, 2017, 60(8): 1067-1074. |
68 | Xu Y F, Zhang C, Mu P, et al. Tetra-armed conjugated microporous polymers for gas adsorption and photocatalytic hydrogen evolution[J]. Science China Chemistry, 2017, 60(8): 1075-1083. |
69 | Tan Z Q, Su H M, Guo Y W, et al. Ferrocene-based conjugated microporous polymers derived from Yamamoto coupling for gas storage and dye removal[J]. Polymers, 2020, 12(3): 719. |
70 | Sheng X, Shi H, Yang L M, et al. Rationally designed conjugated microporous polymers for contaminants adsorption[J]. Science of the Total Environment, 2021, 750: 141683. |
71 | Baig N, Shetty S, Al-Mousawi S, et al. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption[J]. Polymer Chemistry, 2021, 12(15): 2282-2292. |
72 | Luo S H, Zeng Z T, Zeng G M, et al. Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects[J]. Journal of Materials Chemistry A, 2020, 8(14): 6434-6470. |
73 | Xu H, Li X, Hao H M, et al. Designing fluorene-based conjugated microporous polymers for blue light-driven photocatalytic selective oxidation of amines with oxygen[J]. Applied Catalysis B: Environmental, 2021, 285: 119796. |
74 | Wang M K, Wang S, Song X W, et al. Photo-responsive oxidase mimic of conjugated microporous polymer for constructing a pH-sensitive fluorescent sensor for bio-enzyme sensing[J]. Sensors and Actuators B: Chemical, 2020, 316: 128157. |
75 | Yan C N, Meng N, Lyu W, et al. Hierarchical porous hollow carbon spheres derived from spirofluorene- and aniline-linked conjugated microporous polymer for phase change energy storage[J]. Carbon, 2021, 176: 178-187. |
76 | Cheng G, Hasell T, Trewin A, et al. Soluble conjugated microporous polymers[J]. Angewandte Chemie International Edition, 2012, 51(51): 12727-12731. |
77 | Huang B L, Zhao P, Dai Y N, et al. Size-controlled synthesis of soluble-conjugated microporous polymer nanoparticles through sonogashira polycondensation in confined nanoreactors[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2016, 54(15): 2285-2290. |
78 | Tozawa T, Jones J T, Swamy S I, et al. Porous organic cages[J]. Nature Materials, 2009, 8(12): 973-978. |
79 | Yuan Y D, Dong J, Liu J, et al. Porous organic cages as synthetic water channels[J]. Nature Communications, 2020, 11(1): 4927. |
13 | Fan H W, Mundstock A, Gu J H, et al. An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation[J]. Journal of Materials Chemistry A, 2018, 6(35): 16849-16853. |
14 | Ying Y P, Tong M M, Ning S C, et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation[J]. Journal of the American Chemical Society, 2020, 142(9): 4472-4480. |
15 | Fan H W, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. Journal of the American Chemical Society, 2018, 140(32): 10094-10098. |
16 | Wang L, Jia J T, Faheem M, et al. Fabrication of triazine-based porous aromatic framework (PAF) membrane with structural flexibility for gas mixtures separation[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 373-379. |
17 | Lindemann P, Tsotsalas M, Shishatskiy S, et al. Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation[J]. Chemistry of Materials, 2014, 26(24): 7189-7193. |
18 | Song Q L, Jiang S, Hasell T, et al. Porous organic cage thin films and molecular-sieving membranes[J]. Advanced Materials, 2016, 28(13): 2629-2637. |
19 | Feng S, Shang Y X, Wang Z K, et al. Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation[J]. Angewandte Chemie International Edition, 2020, 59(10): 3840-3845. |
20 | Yaghi O M, Li H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. |
21 | Li H L, Eddaoudi M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
22 | Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283(5405): 1148-1150. |
23 | Deng H, Grunder S, Cordova K E, et al. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084): 1018-1023. |
24 | Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
25 | Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
26 | Moghadam P Z, Li A, Liu X W, et al. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD)[J]. Chemical Science, 2020, 11(32): 8373-8387. |
27 | Hou Q Q, Zhou S, Wei Y Y, et al. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation[J]. Journal of the American Chemical Society, 2020, 142(21): 9582-9586. |
28 | Dakhchoune M, Villalobos L F, Semino R, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nature Materials, 2021, 20(3): 362-369. |
29 | Zhang S, Gui B, Ben T, et al. Switchable molecular sieving of a capped metal organic framework membrane[J]. Journal of Materials Chemistry A, 2020, 8(38): 19984-19990. |
30 | Ding M L, Flaig R W, Jiang H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
31 | Boyd P G, Chidambaram A, García-Díez E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256. |
32 | Rojas S, Horcajada P. Metal-organic frameworks for the removal of emerging organic contaminants in water[J]. Chemical Reviews, 2020, 120(16): 8378-8415. |
33 | Wang Y, Yan J, Wen N, et al. Metal-organic frameworks for stimuli-responsive drug delivery[J]. Biomaterials, 2020, 230: 119619. |
80 | Zhang J H, Xie S M, Zi M, et al. Recent advances of application of porous molecular cages for enantioselective recognition and separation[J]. Journal of Separation Science, 2020, 43(1): 134-149. |
81 | Little M A, Cooper A I. The chemistry of porous organic molecular materials[J]. Advanced Functional Materials, 2020, 30(41): 1909842. |
82 | Hasell T, Cooper A I. Porous organic cages: soluble, modular and molecular pores[J]. Nature Reviews Materials, 2016, 1: 16053. |
83 | Duchamp D J, Marsh R E. The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid)[J]. Acta Crystallographica Section B, 1969, 25(1): 5-19. |
84 | He Y B, Xiang S C, Chen B L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature[J]. Journal of the American Chemical Society, 2011, 133(37): 14570-14573. |
85 | Nugent P S, Rhodus V L, Pham T, et al. A robust molecular porous material with high CO2 uptake and selectivity[J]. Journal of the American Chemical Society, 2013, 135(30): 10950-10953. |
86 | Li P, He Y, Arman H D, et al. A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6[J]. Chemical Communications, 2014, 50(86): 13081-13084. |
87 | Lü J, Perez-Krap C, Suyetin M, et al. A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity[J]. Journal of the American Chemical Society, 2014, 136(37): 12828-12831. |
88 | Zhang X, Wang J X, Li L B, et al. A rod-packing hydrogen-bonded organic framework with suitable pore confinement for benchmark ethane/ethylene separation[J]. Angewandte Chemie International Edition, 2021, 60(18): 10304-10310. |
89 | Liang J, Xing S, Brandt P, et al. A chemically stable cucurbit [6] uril-based hydrogen-bonded organic framework for potential SO2/CO2 separation[J]. Journal of Materials Chemistry A, 2020, 8(38): 19799-19804. |
90 | Zhu J Y, Yuan S S, Wang J, et al. Microporous organic polymer-based membranes for ultrafast molecular separations[J]. Progress in Polymer Science, 2020, 110: 101308. |
91 | Li P, He Y B, Guang J, et al. A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols[J]. Journal of the American Chemical Society, 2014, 136(2): 547-549. |
92 | Wang B, He R, Xie L H, et al. Microporous hydrogen-bonded organic framework for highly efficient turn-up fluorescent sensing of aniline[J]. Journal of the American Chemical Society, 2020, 142(28): 12478-12485. |
93 | Gong W, Chu D D, Jiang H, et al. Permanent porous hydrogen-bonded frameworks with two types of Brønsted acid sites for heterogeneous asymmetric catalysis[J]. Nature Communications, 2019, 10: 600. |
94 | Yang W, Wang J W, Wang H L, et al. Highly interpenetrated robust microporous hydrogen-bonded organic framework for gas separation[J]. Crystal Growth & Design, 2017, 17(11): 6132-6137. |
95 | Yin Q, Zhao P, Sa R J, et al. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy[J]. Angewandte Chemie, 2018, 130(26): 7817-7822. |
96 | Wang B, Lv X L, Lv J, et al. A novel mesoporous hydrogen-bonded organic framework with high porosity and stability[J]. Chemical Communications, 2019, 56(1): 66-69. |
97 | Wang Y J, Yin J B, Liu D, et al. Guest-tuned proton conductivity of a porphyrinylphosphonate-based hydrogen-bonded organic framework[J]. Journal of Materials Chemistry A, 2021, 9(5): 2683-2688. |
98 | Li P, He Y B, Zhao Y F, et al. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature[J]. Angewandte Chemie, 2015, 127(2): 584-587. |
99 | Yang W, Zhou W, Chen B L. A flexible microporous hydrogen-bonded organic framework[J]. Crystal Growth & Design, 2019, 19(9): 5184-5188. |
100 | Wang B, Lin R B, Zhang Z J, et al. Hydrogen-bonded organic frameworks as a tunable platform for functional materials[J]. Journal of the American Chemical Society, 2020, 142(34): 14399-14416. |
34 | Wei Y S, Zhang M, Zou R Q, et al. Metal-organic framework-based catalysts with single metal sites[J]. Chemical Reviews, 2020, 120(21): 12089-12174. |
35 | Xie L S, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8536-8580. |
36 | Yin H Q, Yin X B. Metal-organic frameworks with multiple luminescence emissions: designs and applications[J]. Accounts of Chemical Research, 2020, 53(2): 485-495. |
37 | Zhou S, Wei Y Y, Zhuang L B, et al. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates[J]. Journal of Materials Chemistry A, 2017, 5(5): 1948-1951. |
38 | Sun Y W, Liu Y, Caro J, et al. In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity[J]. Angewandte Chemie, 2018, 130(49): 16320-16325. |
39 | Guo H, Liu J Q, Li Y H, et al. Post-synthetic modification of highly stable UiO-66-NH2 membranes on porous ceramic tubes with enhanced H2 separation[J]. Microporous and Mesoporous Materials, 2021, 313: 110823. |
40 | Rong R, Sun Y W, Ji T T, et al. Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth[J]. Journal of Membrane Science, 2020, 610: 118275. |
41 | Lu C J, Wang G, Wang K L, et al. Modified porous SiO2-supported Cu3(BTC)2 membrane with high performance of gas separation[J]. Materials (Basel, Switzerland), 2018, 11(7): E1207. |
42 | Hayashi M, Lee D T, de Mello M D, et al. ZIF-8 membrane permselectivity modification by manganese (Ⅱ) acetylacetonate vapor treatment[J]. Angewandte Chemie International Edition, 2021, 60(17): 9316-9320. |
43 | Qiao Z H, Liang Y Y, Zhang Z Q, et al. Ultrathin low-crystallinity MOF membranes fabricated by interface layer polarization induction[J]. Advanced Materials, 2020, 32(34): 2002165. |
44 | Yaghi O M. Reticular chemistry—construction, properties, and precision reactions of frameworks[J]. Journal of the American Chemical Society, 2016, 138(48): 15507-15509. |
45 | Yaghi O M. Reticular chemistry in all dimensions[J]. ACS Central Science, 2019, 5(8): 1295-1300. |
46 | Wang Z F, Zhang S N, Chen Y, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3): 708-735. |
47 | Cote A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
48 | Kandambeth S, Dey K, Banerjee R. Covalent organic frameworks: chemistry beyond the structure[J]. Journal of the American Chemical Society, 2019, 141(5): 1807-1822. |
49 | Evans A M, Castano I, Brumberg A, et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(50): 19728-19735. |
50 | Ma T, Kapustin E A, Yin S X, et al. Single-crystal X-ray diffraction structures of covalent organic frameworks[J]. Science, 2018, 361(6397): 48-52. |
51 | Li Y, Wang C, Ma S J, et al. Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11706-11714. |
52 | Wei S C, Zhang F, Zhang W B, et al. Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages[J]. Journal of the American Chemical Society, 2019, 141(36): 14272-14279. |
53 | Geng K Y, He T, Liu R Y, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
54 | Dey K, Pal M, Rout K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091. |
55 | Huang N, Krishna R, Jiang D L. Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening[J]. Journal of the American Chemical Society, 2015, 137(22): 7079-7082. |
56 | Ding S Y, Wang W. Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
57 | Segura J L, Royuela S, Mar Ramos M. Post-synthetic modification of covalent organic frameworks[J]. Chemical Society Reviews, 2019, 48(14): 3903-3945. |
58 | Yuan Y, Zhu G S. Porous aromatic frameworks as a platform for multifunctional applications[J]. ACS Central Science, 2019, 5(3): 409-418. |
59 | Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 48(50): 9457-9460. |
60 | Tian Y Y, Zhu G S. Porous aromatic frameworks (PAFs)[J]. Chemical Reviews, 2020, 120(16): 8934-8986. |
61 | Ma T T, Zhao X, Matsuo Y, et al. Fluorescein-based fluorescent porous aromatic framework for Fe3+ detection with high sensitivity[J]. Journal of Materials Chemistry C, 2019, 7(8): 2327-2332. |
62 | Tian Z Q, Dai S, Jiang D E. Confined ionic liquid in an ionic porous aromatic framework for gas separation[J]. ACS Applied Polymer Materials, 2019, 1(1): 95-102. |
101 | 林祖金, 曹荣. 多孔氢键有机框架(HOFs): 现状与挑战[J]. 化学学报, 2020, 78(12): 1309-1335. |
Lin Z J, Cao R. Porous hydrogen-bonded organic frameworks(HOFs): status and challenges[J]. Acta Chimica Sinica, 2020, 78(12): 1309-1335. | |
102 | Lin R B, He Y, Li P, et al. Multifunctional porous hydrogen-bonded organic framework materials[J]. Chemical Society Reviews, 2019, 48(5): 1362-1389. |
103 | Huang A S, Bux H, Steinbach F, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angewandte Chemie International Edition, 2010, 49(29): 4958-4961. |
104 | Liu Y, Wang N Y, Pan J H, et al. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates[J]. Journal of the American Chemical Society, 2014, 136(41): 14353-14356. |
105 | Liang B, Wang H, Shi X, et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration[J]. Nature Chemistry, 2018, 10(9): 961-967. |
106 | Bux H, Liang F Y, Li Y S, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society, 2009, 131(44): 16000-16001. |
107 | Liu Q, Wang N Y, Caro J, et al. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes[J]. Journal of the American Chemical Society, 2013, 135(47): 17679-17682. |
108 | Jiang X, Li S W, Bai Y P, et al. Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation[J]. Journal of Materials Chemistry A, 2019, 7(18): 10898-10904. |
109 | Fu J R, Das S, Xing G L, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2[J]. Journal of the American Chemical Society, 2016, 138(24): 7673-7680. |
110 | Jiang Y, Ryu G H, Joo S H, et al. Porous two-dimensional monolayer metal-organic framework material and its use for the size-selective separation of nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 28107-28116. |
111 | Motoyama S, Makiura R, Sakata O, et al. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets[J]. Journal of the American Chemical Society, 2011, 133(15): 5640-5643. |
112 | Makiura R, Konovalov O. Interfacial growth of large-area single-layer metal-organic framework nanosheets[J]. Sci. Rep., 2013, 3: 2506. |
113 | Shinde D, Sheng G, Li X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2018, 140(43): 14342-14349. |
114 | Wang H, Chen L, Yang H, et al. Brønsted acid mediated covalent organic framework membranes for efficient molecular separation[J]. Journal of Materials Chemistry A, 2019, 7(35): 20317-20324. |
115 | Khan N A, Zhang R N, Wu H, et al. Solid-vapor interface engineered covalent organic framework membranes for molecular separation[J]. Journal of the American Chemical Society, 2020, 142(31): 13450-13458. |
116 | Villalobos L F, Huang T F, Peinemann K V. Cyclodextrin films with fast solvent transport and shape-selective permeability[J]. Advanced Materials, 2017, 29(26): 1606641. |
117 | Richardson J J, Bjornmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms[J]. Science, 2015, 348(6233): aaa2491. |
118 | Richardson J J, Cui J W, Björnmalm M, et al. Innovation in layer-by-layer assembly[J]. Chemical Reviews, 2016, 116(23): 14828-14867. |
119 | Wang S, Yang L, He G, et al. Two-dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49(4): 1071-1089. |
120 | Shekhah O, Swaidan R, Belmabkhout Y, et al. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study[J]. Chemical Communications, 2014, 50(17): 2089-2092. |
121 | Nagaraju D, Bhagat D G, Banerjee R, et al. In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation[J]. Journal of Materials Chemistry A, 2013, 1(31): 8828-8835. |
122 | Lee D J, Li Q M, Kim H, et al. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique[J]. Microporous and Mesoporous Materials, 2012, 163: 169-177. |
123 | Nijem N, Fürsich K, Kelly S T, et al. HKUST-1 thin film layer-by-layer liquid phase epitaxial growth: film properties and stability dependence on layer number[J]. Crystal Growth & Design, 2015, 15(6): 2948-2957. |
124 | Li G, Zhang K, Tsuru T. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8433-8436. |
125 | 刘露月, 吕荥宾, 刘壮, 等. 层层堆叠石墨烯膜的稳定性强化及层间距调控研究进展[J]. 膜科学与技术, 2020, 40(1): 228-239. |
Liu L Y, Lyu X B, Liu Z, et al. Research progress on the stability improvement and interlayer-spacing regulation of graphene-based membranes with laminar structures[J]. Membrane Science and Technology, 2020, 40(1): 228-239. | |
126 | Kuehl V, Yin J S, Duong P H H, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving[J]. Journal of the American Chemical Society, 2018, 140(51): 18200-18207. |
127 | Zhang W X, Zhang L M, Zhao H F, et al. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving[J]. Journal of Materials Chemistry A, 2018, 6(27): 13331-13339. |
128 | Zhou S, Wei Y, Li L, et al. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Science Advances, 2018, 4(10): eaau1393. |
129 | Cao L, He X Y, Jiang Z Y, et al. Channel-facilitated molecule and ion transport across polymer composite membranes[J]. Chemical Society Reviews, 2017, 46(22): 6725-6745. |
130 | Wang H J, Wang M D, Liang X, et al. Organic molecular sieve membranes for chemical separations[J]. Chemical Society Reviews, 2021, 50: 5468-5516. |
131 | 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62(Z1): 223-232. |
Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62(Z1): 223-232. | |
132 | 金万勤, 徐南平. 限域传质分离膜[J]. 化工学报, 2018, 69(1): 50-56. |
Jin W Q, Xu N P. Membrane separation based on mechanism of confined mass transfer[J]. CIESC Journal, 2018, 69(1): 50-56. | |
133 | Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
134 | D'Alessandro D, Smit B, Long J. Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. |
135 | Ban Y J, Li Z J, Li Y S, et al. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angewandte Chemie International Edition, 2015, 54(51): 15483-15487. |
136 | Cacho-Bailo F, Catalan-Aguirre S, Etxeberria-Benavides M, et al. Metal-organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis[J]. Journal of Membrane Science, 2015, 476: 277-285. |
137 | Kong L Y, Zhang X F, Liu Y G, et al. In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system[J]. Materials Chemistry and Physics, 2014, 148(1/2): 10-16. |
138 | Wang Y H, Jin H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angewandte Chemie International Edition, 2020, 59(11): 4365-4369. |
139 | Rui Z B, James J B, Kasik A, et al. Metal-organic framework membrane process for high purity CO2 production[J]. AIChE Journal, 2016, 62(11): 3836-3841. |
140 | Hou Q Q, Wu Y, Zhou S, et al. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation[J]. Angewandte Chemie International Edition, 2019, 58(1): 327-331. |
141 | Tong M M, Zhang Y D, Yan T, et al. Computational insights on the role of nanochannel environment in the CO2/CH4 and H2/CH4 separation using restacked covalent organic framework membranes[J]. The Journal of Physical Chemistry C, 2019, 123(37): 22949-22958. |
142 | Yan T, Lan Y S, Tong M M, et al. Screening and design of covalent organic framework membranes for CO2/CH4 separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1220-1227. |
143 | Baena-Moreno F M, Rodríguez-Galán M, Vega F, et al. Carbon capture and utilization technologies: a literature review and recent advances[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(12): 1403-1433. |
144 | Feng Y, Wang Z K, Fan W D, et al. Engineering the pore environment of metal–organic framework membranes via modification of the secondary building unit for improved gas separation[J]. Journal of Materials Chemistry A, 2020, 8(26): 13132-13141. |
145 | Liu W, Jiang S D, Yan Y G, et al. A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation[J]. Nature Communications, 2020, 11: 1633. |
146 | Fan H, Peng M, Strauss I, et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation[J]. Nature Communications, 2021, 12(1): 38. |
147 | Li Y, Liu H, Wang H, et al. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H2/CO2 separation[J]. Chemical Science, 2018, 9(17): 4132-4141. |
148 | Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
149 | Fan H W, Peng M H, Strauss I, et al. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation[J]. Journal of the American Chemical Society, 2020, 142(15): 6872-6877. |
150 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
151 | Zhang C, Lively R P, Zhang K, et al. Unexpected molecular sieving properties of zeolitic imidazolate framework-8[J]. The Journal of Physical Chemistry Letters, 2012, 3(16): 2130-2134. |
152 | 潘宜昌, 邢卫红. 丙烯/丙烷分离的ZIF-8膜研究进展[J]. 化工进展, 2020, 39(6): 2036-2048. |
Pan Y C, Xing W H. Recent progress of ZIF-8 membrane for propylene/propane separation[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2036-2048. | |
153 | Pan Y C, Li T, Lestari G, et al. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes[J]. Journal of Membrane Science, 2012, 390/391: 93-98. |
154 | Kwon H T, Jeong H K, Lee A S, et al. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances[J]. Journal of the American Chemical Society, 2015, 137(38): 12304-12311. |
155 | Zhao Y L, Wei Y Y, Lyu L X, et al. Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation[J]. Journal of the American Chemical Society, 2020, 142(50): 20915-20919. |
156 | Ma Q, Mo K, Gao S S, et al. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation[J]. Angewandte Chemie, 2020, 132(49): 22093-22098. |
157 | Anderson R, Schweitzer B, Wu T, et al. Molecular simulation insights on Xe/Kr separation in a set of nanoporous crystalline membranes[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 582-592. |
158 | Sumer Z, Keskin S. Molecular simulations of MOF adsorbents and membranes for noble gas separations[J]. Chemical Engineering Science, 2017, 164: 108-121. |
159 | Wu T, Feng X H, Elsaidi S K, et al. Zeolitic imidazolate framework-8 (ZIF-8) membranes for Kr/Xe separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(6): 1682-1686. |
160 | Wu T, Lucero J, Sinnwell M A, et al. Recovery of xenon from air over ZIF-8 membranes[J]. Chemical Communications, 2018, 54(65): 8976-8979. |
161 | Lucero J M, Carreon M A. Separation of light gases from xenon over porous organic cage membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 32182-32188. |
[1] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[2] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[3] | 郎雪梅, 姚柳眉, 樊栓狮, 李刚, 王燕鸿. 多孔材料中甲烷水合物生成的传热数值模拟研究[J]. 化工学报, 2022, 73(9): 3851-3860. |
[4] | 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432. |
[5] | 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551. |
[6] | 李贵贤, 王可, 王健, 孟文亮, 李婧玮, 杨勇, 范宗良, 王东亮, 周怀荣. 膜分离捕集燃煤电厂烟气CO2过程优化设计[J]. 化工学报, 2022, 73(11): 5065-5077. |
[7] | 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429. |
[8] | 夏东, 黄朋, 李恒. 水热法制备三维导电石墨烯气凝胶及其焦耳热性能研究[J]. 化工学报, 2021, 72(7): 3839-3848. |
[9] | 杜娟, 龚志强, 黄曹兴, 梁辰, 姚双全, 刘杨. 树脂吸附-超滤协同分离甘蔗渣碱法半纤维素[J]. 化工学报, 2021, 72(4): 2139-2147. |
[10] | 张娅, 王锐, 文思斯, 周燚洒, 薛健, 王海辉. 石墨相氮化碳纳米片膜研究进展[J]. 化工学报, 2021, 72(12): 6188-6202. |
[11] | 王艳芳,毛恒,蔡玮玮,张傲率,徐李昊,赵之平. ZIF-L/PDMS混合基质膜蒸气渗透耦合发酵强化乙醇生产效率的研究[J]. 化工学报, 2021, 72(10): 5226-5236. |
[12] | 李建惠, 兰天昊, 陈杨, 杨江峰, 李立博, 李晋平. MOF复合材料在气体吸附分离中的研究进展[J]. 化工学报, 2021, 72(1): 167-179. |
[13] | 王琛璐, 王艳磊, 赵秋, 吕玉苗, 霍锋, 何宏艳. 低维纳米受限离子液体的研究进展[J]. 化工学报, 2021, 72(1): 366-383. |
[14] | 赵云, 向中华. 微流控制备金属/共价有机框架功能材料研究进展[J]. 化工学报, 2020, 71(6): 2547-2563. |
[15] | 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||