化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5707-5716.DOI: 10.11949/0438-1157.20210707
收稿日期:
2021-05-25
修回日期:
2021-06-22
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
邓晓刚
作者简介:
王晓慧(1978—),女,博士研究生,基金资助:
Xiaohui WANG(),Yanjiang WANG,Xiaogang DENG(),Zheng ZHANG
Received:
2021-05-25
Revised:
2021-06-22
Online:
2021-11-05
Published:
2021-11-12
Contact:
Xiaogang DENG
摘要:
传统支持向量数据描述(SVDD)方法本质上采用浅层学习框架,难以有效监控非线性工业过程的复杂故障。针对此问题,提出一种基于加权深度支持向量数据描述(WDSVDD)的故障检测方法。该方法一方面在深度学习框架下重新定义SVDD优化目标函数,构建基于深度特征的深度SVDD监控模型(DSVDD),并利用核密度估计法计算监控指标的统计控制限;另一方面,考虑到深度特征的故障敏感度差异特性,在DSVDD监控模型中设计特征加权层,分别从静态和动态信息分析角度给出权重因子的计算方法,利用权重因子突出故障敏感特征的影响以提高故障检测率。应用于一个典型化工过程的测试结果表明,所研究的方法能够比传统SVDD方法更有效地监控过程中复杂故障的发生。
中图分类号:
王晓慧, 王延江, 邓晓刚, 张政. 基于加权深度支持向量数据描述的工业过程故障检测[J]. 化工学报, 2021, 72(11): 5707-5716.
Xiaohui WANG, Yanjiang WANG, Xiaogang DENG, Zheng ZHANG. Industrial process fault detection using weighted deep support vector data description[J]. CIESC Journal, 2021, 72(11): 5707-5716.
编号 | 故障描述 |
---|---|
IDV4 | 反应器冷却水入口温度发生阶跃变化 |
IDV5 | 冷凝器冷却水入口温度发生阶跃变化 |
IDV10 | C进料温度随机波动 |
IDV11 | 反应器冷却水入口温度随机波动 |
IDV16 | 未知类型故障 |
IDV17 | 未知类型故障 |
IDV19 | 未知类型故障 |
IDV20 | 未知类型故障 |
IDV21 | 物流4的阀门故障 |
表1 用于算法测试的故障
Table 1 Faults for algorithm testing
编号 | 故障描述 |
---|---|
IDV4 | 反应器冷却水入口温度发生阶跃变化 |
IDV5 | 冷凝器冷却水入口温度发生阶跃变化 |
IDV10 | C进料温度随机波动 |
IDV11 | 反应器冷却水入口温度随机波动 |
IDV16 | 未知类型故障 |
IDV17 | 未知类型故障 |
IDV19 | 未知类型故障 |
IDV20 | 未知类型故障 |
IDV21 | 物流4的阀门故障 |
No. | FDR/% | |||
---|---|---|---|---|
SVDD | DSVDD | SWSVDD | DWSVDD | |
IDV4 | 95.50 | 100.00 | 100.00 | 100.00 |
IDV5 | 37.63 | 100.00 | 100.00 | 100.00 |
IDV10 | 59.38 | 78.63 | 83.13 | 95.25 |
IDV11 | 72.50 | 71.88 | 77.50 | 97.50 |
IDV16 | 46.38 | 82.38 | 86.25 | 98.25 |
IDV17 | 91.75 | 96.75 | 97.25 | 97.75 |
IDV19 | 16.50 | 62.50 | 70.75 | 95.63 |
IDV20 | 62.63 | 72.75 | 77.25 | 92.13 |
IDV21 | 47.50 | 54.88 | 60.63 | 65.75 |
mean | 58.86 | 79.97 | 83.64 | 93.58 |
表2 故障检测率比较
Table 2 Comparison of fault detection rates
No. | FDR/% | |||
---|---|---|---|---|
SVDD | DSVDD | SWSVDD | DWSVDD | |
IDV4 | 95.50 | 100.00 | 100.00 | 100.00 |
IDV5 | 37.63 | 100.00 | 100.00 | 100.00 |
IDV10 | 59.38 | 78.63 | 83.13 | 95.25 |
IDV11 | 72.50 | 71.88 | 77.50 | 97.50 |
IDV16 | 46.38 | 82.38 | 86.25 | 98.25 |
IDV17 | 91.75 | 96.75 | 97.25 | 97.75 |
IDV19 | 16.50 | 62.50 | 70.75 | 95.63 |
IDV20 | 62.63 | 72.75 | 77.25 | 92.13 |
IDV21 | 47.50 | 54.88 | 60.63 | 65.75 |
mean | 58.86 | 79.97 | 83.64 | 93.58 |
No. | FAR/% | |||
---|---|---|---|---|
SVDD | DSVDD | SWSVDD | DWSVDD | |
IDV4 | 1.88 | 0.63 | 4.38 | 0.63 |
IDV5 | 1.88 | 0.63 | 4.38 | 0.63 |
IDV10 | 1.88 | 5.63 | 10.00 | 5.63 |
IDV11 | 3.13 | 3.13 | 10.00 | 3.13 |
IDV16 | 28.75 | 16.88 | 23.13 | 18.13 |
IDV17 | 1.25 | 6.88 | 12.5 | 6.88 |
IDV19 | 0.63 | 4.38 | 6.25 | 4.38 |
IDV20 | 0.63 | 1.25 | 3.13 | 1.25 |
IDV21 | 8.13 | 7.50 | 17.50 | 8.13 |
mean | 5.35 | 5.21 | 10.14 | 5.42 |
表3 故障误报率比较
Table 3 Comparison of false fault alarming rates
No. | FAR/% | |||
---|---|---|---|---|
SVDD | DSVDD | SWSVDD | DWSVDD | |
IDV4 | 1.88 | 0.63 | 4.38 | 0.63 |
IDV5 | 1.88 | 0.63 | 4.38 | 0.63 |
IDV10 | 1.88 | 5.63 | 10.00 | 5.63 |
IDV11 | 3.13 | 3.13 | 10.00 | 3.13 |
IDV16 | 28.75 | 16.88 | 23.13 | 18.13 |
IDV17 | 1.25 | 6.88 | 12.5 | 6.88 |
IDV19 | 0.63 | 4.38 | 6.25 | 4.38 |
IDV20 | 0.63 | 1.25 | 3.13 | 1.25 |
IDV21 | 8.13 | 7.50 | 17.50 | 8.13 |
mean | 5.35 | 5.21 | 10.14 | 5.42 |
SWDSVDD | DWDSVDD | |||
---|---|---|---|---|
FAR/% | FDR/% | FAR/% | FDR/% | |
0.5 | 14.93 | 86.68 | 5.28 | 93.21 |
1 | 12.85 | 85.31 | 5.35 | 93.32 |
2 | 10.14 | 83.64 | 5.42 | 93.58 |
4 | 7.08 | 81.58 | 5.63 | 93.90 |
8 | 5.56 | 80.42 | 6.04 | 94.08 |
16 | 5.21 | 79.97 | 6.39 | 94.13 |
表4 不同调节因子情形下的平均监控效果
Table 4 Average monitoring results under different tuning factors
SWDSVDD | DWDSVDD | |||
---|---|---|---|---|
FAR/% | FDR/% | FAR/% | FDR/% | |
0.5 | 14.93 | 86.68 | 5.28 | 93.21 |
1 | 12.85 | 85.31 | 5.35 | 93.32 |
2 | 10.14 | 83.64 | 5.42 | 93.58 |
4 | 7.08 | 81.58 | 5.63 | 93.90 |
8 | 5.56 | 80.42 | 6.04 | 94.08 |
16 | 5.21 | 79.97 | 6.39 | 94.13 |
1 | Booyse W, Wilke D N, Heyns S. Deep digital twins for detection, diagnostics and prognostics[J]. Mechanical Systems and Signal Processing, 2020, 140: 106612. |
2 | 李元, 杨东昇, 赵丽颖, 等. 层次变分高斯混合模型与主多项式分析的故障检测策略[J]. 化工学报, 2021, 72(3): 1616-1626. |
Li Y, Yang D S, Zhao L Y, et al. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis[J]. CIESC Journal, 2021, 72(3): 1616-1626. | |
3 | Chen H T, Jiang B, Zhang T Y, et al. Data-driven and deep learning-based detection and diagnosis of incipient faults with application to electrical traction systems[J]. Neurocomputing, 2020, 396: 429-437. |
4 | Zhu J L, Ge Z Q, Song Z H, et al. Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data[J]. Annual Reviews in Control, 2018, 46: 107-133. |
5 | 徐静, 王振雷, 王昕. 基于非线性动态全局局部保留投影算法的化工过程故障检测[J]. 化工学报, 2020, 71(12): 5655-5663. |
Xu J, Wang Z L, Wang X. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections[J]. CIESC Journal, 2020, 71(12): 5655-5663. | |
6 | 姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1764. |
Yao Y M, Luo W J, Dai Y Y. Research progress of data-driven methods in fault diagnosis of chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764. | |
7 | Wang B, Mao Z Z. A dynamic ensemble outlier detection model based on an adaptive k-nearest neighbor rule[J]. Information Fusion, 2020, 63: 30-40. |
8 | Wang K Z, Lan H B. Robust support vector data description for novelty detection with contaminated data[J]. Engineering Applications of Artificial Intelligence, 2020, 91: 103554. |
9 | Zhao Y P, Xie Y L, Ye Z F. A new dynamic radius SVDD for fault detection of aircraft engine[J]. Engineering Applications of Artificial Intelligence, 2021, 100: 104177. |
10 | Jiang Q C, Yan X F, Huang B. Deep discriminative representation learning for nonlinear process fault detection[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1410-1419. |
11 | 王建林, 马琳钰, 刘伟旻, 等. 基于核相似度支持向量数据描述的间歇过程监测[J]. 化工学报, 2017, 68(9): 3494-3500. |
Wang J L, Ma L Y, Liu W M, et al. Batch process monitoring by kernel similarity-based support vector data description [J]. CIESC Journal, 2017, 68(9): 3494-3500. | |
12 | 赵小强, 牟淼. 基于变量分块的KDLV-DWSVDD间歇过程故障检测算法研究[J]. 仪器仪表学报, 2021, 42(2): 244-256. |
Zhao X Q, Mou M. Research on fault detection algorithm of batch process based on KDLV-DWSVDD of variable blocks[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 244-256. | |
13 | Zhang Y F, Li X S. Two-step support vector data description for dynamic, non-linear, and non-Gaussian processes monitoring[J]. The Canadian Journal of Chemical Engineering, 2020, 98(10): 2109-2124. |
14 | Yuan P, Mao Z Z, Wang B. A pruned support vector data description-based outlier detection method: applied to robust process monitoring[J]. Transactions of the Institute of Measurement and Control, 2020, 42(11): 2113-2126. |
15 | Liu C Y, Gryllias K. A semi-supervised Support Vector Data Description-based fault detection method for rolling element bearings based on cyclic spectral analysis[J]. Mechanical Systems and Signal Processing, 2020, 140: 106682. |
16 | Lv Z, Yan X F, Jiang Q C, et al. Just-in-time learning-multiple subspace support vector data description used for non-Gaussian dynamic batch process monitoring[J]. Journal of Chemometrics, 2019, 33(6): e3134. |
17 | Haghighi F, Omranpour H. Stacking ensemble model of deep learning and its application to Persian/Arabic handwritten digits recognition[J]. Knowledge-Based Systems, 2021, 220: 106940. |
18 | Wang M, Deng W H. Deep face recognition: a survey[J]. Neurocomputing, 2021, 429: 215-244. |
19 | Garain A, Singh P K, Sarkar R. FuzzyGCP: a deep learning architecture for automatic spoken language identification from speech signals[J]. Expert Systems with Applications, 2021, 168: 114416. |
20 | Tax D M J, Duin R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66. |
21 | 谢彦红, 贾冬妮, 张成, 等. 基于邻域保持嵌入-支持向量数据描述的过程监控算法及其应用[J]. 信息与控制, 2020, 49(5): 625-632. |
Xie Y H, Jia D N, Zhang C, et al. Support-vector-data-description process monitoring algorithm based on neighborhood preserving embedding and its application[J]. Information and Control, 2020, 49(5): 625-632. | |
22 | Wang X H, Wang Y J, Deng X G, et al. A batch process monitoring method using two-dimensional localized dynamic support vector data description[J]. IEEE Access, 2020, 8: 181192-181204. |
23 | Ruff L, Vandermeulen R A, Gornitz N, et al. Deep one-class classification [C]//The 35th International Conference on Machine Learning. Stockholm, Sweden, 2018: 4390-4399. |
24 | Ruff L, Vandermeulen RA, Gornitz N, et al. Deep support vector data description for unsupervised and semi-supervised anomaly detection [C]//The ICML 2019 Workshop on Uncertainty and Robustness in Deep Learning. Long Beach, California, USA, 2019: 1-10. |
25 | Odiowei P E P, Cao Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 36-45. |
26 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3): 245-255. |
27 | Xue T, Zhong M Y, Luo L J, et al. Distributionally robust fault detection by using kernel density estimation[J]. IFAC-PapersOnLine, 2020, 53(2): 652-657. |
28 | Deng X G, Tian X M, Chen S, et al. Deep principal component analysis based on layerwise feature extraction and its application to nonlinear process monitoring[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2526-2540. |
29 | Chen Q, Wang Y Q. Key-performance-indicator-related state monitoring based on kernel canonical correlation analysis[J]. Control Engineering Practice, 2021, 107: 104692. |
30 | Cao J, He Y L, Zhu Q X. An ontology-based procedure knowledge framework for the process industry[J]. The Canadian Journal of Chemical Engineering, 2021, 99(2): 530-542. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 张逸豪, 王振雷. 基于最大信息系数的分组支持向量数据描述故障检测[J]. 化工学报, 2023, 74(9): 3865-3878. |
[5] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[6] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[7] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[8] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[9] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[10] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[11] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[12] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[13] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[14] | 宋冰, 郑城风, 侍洪波, 陶阳, 谭帅. 基于VAE-OCCA的质量相关故障检测方法研究[J]. 化工学报, 2023, 74(4): 1630-1638. |
[15] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||