化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1194-1206.doi: 10.11949/0438-1157.20211439
王旭(),张乐瑶,张昊轩,演嘉辉,吴玉帅,吴冬,陈汇勇(
),马晓迅
Xu WANG(),Leyao ZHANG,Haoxuan ZHANG,Jiahui YAN,Yushuai WU,Dong WU,Huiyong CHEN(
),Xiaoxun MA
摘要:
吸附容量高、吸附速率快以及憎水性强是分子筛用于挥发性有机物(VOCs)高效吸附的主要性能指标。分别以纯硅(S-1)和W掺杂(WS-1)MFI分子筛为母体,通过一步水热脱硅/补钨后处理制备了具有全空腔(HWS-1_S)和多孔芯(HWS-1_W)的两种中空结构分子筛,并以典型的VOCs气体分子丙酮为探针,系统研究了中空结构形态对于分子筛吸附性能的影响。结果表明:HWS-1_S表面部分开孔,内部全空腔且与外部连通,相比于母体S-1,相对结晶度较低,微孔孔容减少;HWS-1_W表面开孔细微,内部出现不规则的大/中孔结构,相比母体WS-1,相对结晶度提高,微孔孔容增大。干气条件下,HWS-1_S与HWS-1_W相比母体S-1和WS-1对丙酮具有更快的吸附速率;HWS-1_S微孔孔容损失严重,导致吸附容量有限(27.4 mg·g-1);HWS-1_W由于重结晶修复了部分结构缺陷,提高了丙酮吸附容量(51.2 mg·g-1)。通过吸附动力学拟合,HWS-1_S和HWS-1_W符合典型的孔扩散机理,对丙酮主要以物理吸附为主。湿气条件下,W掺杂可有效中和中空分子筛表面硅醇基团,在一定程度上提高了W掺杂中空分子筛抗水汽竞争吸附能力。
中图分类号:
1 | He C, Cheng J, Zhang X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-4568. |
2 | Maudhuit A, Raillard C, Héquet V, et al. Adsorption phenomena in photocatalytic reactions: the case of toluene, acetone and heptane[J]. Chemical Engineering Journal, 2011, 170(2/3): 464-470. |
3 | 孙静, 董一霖, 李法齐, 等. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315. |
Sun J, Dong Y L, Li F Q, et al. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve[J]. CIESC Journal, 2021, 72(6): 3306-3315. | |
4 | 高君安, 王伟, 张傑, 等. 用于高湿度废气中甲苯吸附净化的疏水型ZSM-5分子筛的合成及其吸附性能研究[J]. 化工学报, 2020, 71(1): 337-343. |
Gao J A, Wang W, Zhang J, et al. Study on synthesis and adsorption performance of hydrophobic ZSM-5 zeolites for removal of toluene in high-humidity exhaust gas[J]. CIESC Journal, 2020, 71(1): 337-343. | |
5 | Sui H, Liu J J, He L, et al. Adsorption and desorption of binary mixture of acetone and ethyl acetate on silica gel[J]. Chemical Engineering Science, 2019, 197: 185-194. |
6 | Baek S W, Kim J R, Ihm S K. Design of dual functional adsorbent/catalyst system for the control of VOC’s by using metal-loaded hydrophobic Y-zeolites[J]. Catalysis Today, 2004, 93/94/95: 575-581. |
7 | Ouzzine M, Romero-Anaya A J, Lillo-Ródenas M A, et al. Spherical activated carbons for the adsorption of a real multicomponent VOC mixture[J]. Carbon, 2019, 148: 214-223. |
8 | Yang C T, Miao G, Pi Y H, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. |
9 | Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. |
10 | Zhang L, Peng Y X, Zhang J, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials[J]. Chinese Journal of Catalysis, 2016, 37(6): 800-809. |
11 | Shah I K, Pre P, Alappat B J. Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1733-1738. |
12 | Veerapandian S K P, de Geyter N, Giraudon J M, et al. The use of zeolites for VOCs abatement by combining non-thermal plasma, adsorption, and/or catalysis: a review[J]. Catalysts, 2019, 9(1): 98. |
13 | Song W, Justice R E, Jones C A, et al. Size-dependent properties of nanocrystalline silicalite synthesized with systematically varied crystal sizes[J]. Langmuir, 2004, 20(11): 4696-4702. |
14 | Li X Q, Zhang L, Yang Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review[J]. Separation and Purification Technology, 2020, 235: 116213. |
15 | Lou F J, Zhang G H, Ren L M, et al. Impacts of nano-scale pore structure and organic amine assembly in porous silica on the kinetics of CO2 adsorptive separation[J]. Nano Research, 2021, 14(9): 3294-3302. |
16 | Chen L H, Sun M H, Wang Z, et al. Hierarchically structured zeolites: from design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294. |
17 | Li Y, Li L, Yu J H. Applications of zeolites in sustainable chemistry[J]. Chem, 2017, 3(6): 928-949. |
18 | Feng A H, Yu Y, Mi L, et al. Structural, textural and toluene adsorption properties of NH4HF2 and alkali modified USY zeolite[J]. Microporous and Mesoporous Materials, 2019, 290: 109646. |
19 | Feng A H, Mi L, Yu Y, et al. Development of intracrystalline mesoporosity in NH4HF2-etched NaY zeolites by surfactant-templating and its effect on toluene adsorption[J]. Chemical Engineering Journal, 2020, 390: 124529. |
20 | Cosseron A F, Daou T J, Tzanis L, et al. Adsorption of volatile organic compounds in pure silica CHA, BEA, MFI and STT-type zeolites[J]. Microporous and Mesoporous Materials, 2013, 173: 147-154. |
21 | Zhu L L, Shen D K, Luo K H. A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods[J]. Journal of Hazardous Materials, 2020, 389: 122102. |
22 | Dai C Y, Zhang A F, Li L L, et al. Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment[J]. Chemistry of Materials, 2013, 25(21): 4197-4205. |
23 | Medeiros-Costa I C, Dib E, Nesterenko N, et al. Silanol defect engineering and healing in zeolites: opportunities to fine-tune their properties and performances[J]. Chemical Society Reviews, 2021, 50(19): 11156-11179. |
24 | Grand J, Talapaneni S N, Vicente A, et al. One-pot synthesis of silanol-free nanosized MFI zeolite[J]. Nature Materials, 2017, 16(10): 1010-1015. |
25 | Grand J, Talapaneni S N, Aleksandrov H A, et al. Hydrophobic tungsten-containing MFI-type zeolite films for exhaust gas detection[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12914-12919. |
26 | Dubray F, Moldovan S, Kouvatas C, et al. Direct evidence for single molybdenum atoms incorporated in the framework of MFI zeolite nanocrystals[J]. Journal of the American Chemical Society, 2019, 141(22): 8689-8693. |
27 | Guo Y, Quan X, Lu N, et al. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes[J]. Environmental Science & Technology, 2007, 41(12): 4422-4427. |
28 | Zhang H Y, Yang X T, Song X J, et al. Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation[J]. Microporous and Mesoporous Materials, 2020, 303: 110277. |
29 | Wang X, You Q, Wu Y S, et al. Tungsten-substituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene[J]. Microporous and Mesoporous Materials, 2021, 317: 111028. |
30 | Dai C Y, Zhang S H, Zhang A F, et al. Hollow zeolite encapsulated Ni–Pt bimetals for sintering and coking resistant dry reforming of methane[J]. Journal of Materials Chemistry A, 2015, 3(32): 16461-16468. |
31 | Wang Y S, Jia H, Fang X, et al. CO2 and water vapor adsorption properties of framework hybrid W-ZSM-5/silicalite-1 prepared from RHA[J]. RSC Advances, 2020, 10(41): 24642-24652. |
32 | Wu H Y, Zhang X L, Yang C Y, et al. Alkali-hydrothermal synthesis and characterization of W-MCM-41 mesoporous materials with various Si/W molar ratios[J]. Applied Surface Science, 2013, 270: 590-595. |
33 | Watmanee S, Suriye K, Praserthdam P, et al. Formation of isolated tungstate sites on hierarchical structured SiO2- and HY zeolite-supported WO x catalysts for propene metathesis[J]. Journal of Catalysis, 2019, 376: 150-160. |
34 | Hu Q, Li J J, Hao Z P, et al. Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials[J]. Chemical Engineering Journal, 2009, 149(1/2/3): 281-288. |
35 | Li X F, Wang J, Guo Y Y, et al. Adsorption and desorption characteristics of hydrophobic hierarchical zeolites for the removal of volatile organic compounds[J]. Chemical Engineering Journal, 2021, 411: 128558. |
36 | Chandak M V, Lin Y S. Hydrophobic zeolites as adsorbents for removal of volatile organic compounds from air[J]. Environmental Technology, 1998, 19(9): 941-948. |
37 | Mi Z R, Li J, Lu T T, et al. Reducing the dosage of the organic structure-directing agent in the crystallization of pure silica zeolite MFI (silicalite-1) for volatile organic compounds (VOCs) adsorption[J]. Inorganic Chemistry Frontiers, 2021, 8(13): 3354-3362. |
38 | Guo M, Liu Q, Lu S, et al. Synthesis of silanol-rich MCM-48 with mixed surfactants and their application in acetone adsorption: equilibrium, kinetic, and thermodynamic studies[J]. Langmuir, 2020, 36(39): 11528-11537. |
39 | Fang H J, Zheng A M, Chu Y Y, et al. 13C chemical shift of adsorbed acetone for measuring the acid strength of solid acids: a theoretical calculation study[J]. The Journal of Physical Chemistry C, 2010, 114(29): 12711-12718. |
40 | Huang S S, Deng W, Zhang L, et al. Adsorptive properties in toluene removal over hierarchical zeolites[J]. Microporous and Mesoporous Materials, 2020, 302: 110204. |
41 | Zhou J, Fan W, Wang Y D, et al. The essential mass transfer step in hierarchical/nano zeolite: surface diffusion[J]. National Science Review, 2020, 7(11): 1630-1632. |
42 | Zhu Z G, Xu H, Jiang J G, et al. Hydrophobic nanosized all-silica beta zeolite: efficient synthesis and adsorption application[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 27273-27283. |
43 | Bal'Zhinimaev B S, Paukshtis E A, Toktarev A V, et al. Effect of water on toluene adsorption over high silica zeolites[J]. Microporous and Mesoporous Materials, 2019, 277: 70-77. |
44 | Iyoki K, Kikumasa K, Onishi T, et al. Extremely stable zeolites developed via designed liquid-mediated treatment[J]. Journal of the American Chemical Society, 2020, 142(8): 3931-3938. |
[1] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[2] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[3] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[4] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[5] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[6] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
[7] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[8] | 许万, 陈振斌, 张慧娟, 牛昉昉, 火婷, 刘兴盛. 线性温敏性聚合物嵌段调控的 |
[9] | 彭晓婉, 郭笑楠, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8浆液法分离CH4/N2的双吸收-吸附塔工艺流程建模与模拟[J]. 化工学报, 2023, 74(2): 784-795. |
[10] | 李敏, 阎雪茹, 刘新磊. 苯并咪唑连接聚合物吸附剂和膜研究进展[J]. 化工学报, 2023, 74(2): 599-616. |
[11] | 姜家豪, 黄笑乐, 任纪云, 朱正荣, 邓磊, 车得福. 生物炭吸附溶液中Pb2+的定性及定量研究[J]. 化工学报, 2023, 74(2): 830-842. |
[12] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[13] | 焦巡, 童成, 李存璞, 魏子栋. 锂硫电池的动力学调控策略[J]. 化工学报, 2023, 74(1): 170-191. |
[14] | 李沐紫, 贾国伟, 赵砚珑, 张鑫, 李建荣. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
[15] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
|