化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1457-1473.DOI: 10.11949/0438-1157.20221461
王子健(), 柯明(), 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐
收稿日期:
2022-11-08
修回日期:
2023-03-22
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
柯明
作者简介:
王子健(1995—),男,博士研究生, 757496137@qq.com
基金资助:
Zijian WANG(), Ming KE(), Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN
Received:
2022-11-08
Revised:
2023-03-22
Online:
2023-04-05
Published:
2023-06-02
Contact:
Ming KE
摘要:
ZSM-5分子筛作为应用最为广泛的催化剂之一,一直是研究关注的重点。由于其沿着b轴直通孔道相比于沿着a轴和c轴的Z形孔道具有更好的扩散性能,其长度的控制对改善分子筛的催化特性具有重要作用。综述了控制ZSM-5分子筛各向生长的主要方法,结构导向法和生长修饰法。对短b轴ZSM-5分子筛在MTP、MTH以及MTG等催化领域的应用进行了具体分析。并指出,特定季铵盐作为结构导向剂制备的片层分子筛,具有均匀良好的自柱撑结构和晶间介孔,由于结构导向剂制备难度较高,采用生长修饰剂部分取代季铵盐更加经济环保。特定生长修饰剂合成难度低且成本低廉,制备的分子筛具有分散或团聚片层结构,新工艺的开发以改善晶间介孔将使其具有更好的扩散性。对片层分子筛厚度和酸性的精准调控、合成机理以及各向长度对催化性能影响的深入研究,以保证高效制备兼顾转化率、选择性以及稳定性的分子筛对短b轴分子筛的发展具有重要意义。
中图分类号:
王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473.
Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve[J]. CIESC Journal, 2023, 74(4): 1457-1473.
图2 MFI纳米片的结晶:(a)单MFI纳米片的结构模型(表面活性剂分子沿着MFI骨架的直通道排列;两个季铵基团(表示为红色球体)位于孔道交叉处,一个在骨架内,另一个在外表面的孔口处);(b)许多MFI纳米片沿着b轴形成多层堆叠;(c)单层结构的随机组合[31]
Fig.2 Crystallization of MFI nanosheets: (a) Structure model for the single MFI nanosheet (Surfactant molecules are aligned along the straight channel of MFI framework. Two quaternary ammonium groups (indicated as a red sphere) are located at the channel intersections. One is inside the framework, and the other is at the pore mouth of the external surface); (b) Many MFI nanosheets form either multilamellar stacking along the b-axis; (c) A random assembly of unilamellar structure [31]
图4 非晶骨架向SCZN的转化机制[(a)、(b)]和表面活性剂分子的相应排列的示意图[(c)、(d)] [41]corresponding arrangement of surfactant molecules [(c), (d)][41]
Fig.4 Schematic representation of the transformation mechanism of the amorphous frameworks to SCZN [(a), (b)] and the
图8 用于一步(170℃)或两步(80℃,然后170℃)合成沸石的单晶分级片状ZSM-5晶体的形成机制[63]
Fig.8 Formation mechanism of the single-crystalline hierarchical plate-like ZSM-5 crystal for zeolite syntheses in one step (at 170℃) or in two steps (at 80℃ and then at 170℃)[63]
图9 ZSM-5催化剂上MTP反应的平均产物选择性(a)和催化剂寿命(b)[葡萄糖/SiO2质量比为Z5-A:0,Z5-B:0.12,Z5-C:0.24;Z5-C负载P为Z5-CP:1.5%(质量),Z5-CP2:2.0%(质量),Z5-CP3:3.0%(质量)][76]
Fig.9 Average product selectivity (a) and catalyst lifetime (b) for MTP reactions over the ZSM-5 catalysts [glucose/SiO2 is Z5-A: 0, Z5-B: 0.12, Z5-C: 0.24; Z5-C loading P is Z5-CP: 1.5%(mass), Z5-CP2: 2.0%(mass), Z5-CP3: 3.0%(mass)][76]
图11 甲醇的催化转化(a);产物选择性(LPG、C5+和芳烃) (b); 甲醇转化后U-ZSM-5-0.03和SH-ZSM-5废催化剂中的有机物质TG谱图(c)和GC-MS色谱图(d)[81]
Fig. 11 Catalytic conversion of methanol (a); Product selectivity (LPG, C5+ and aromatics) (b); TG profiles (c) and GC-MS chromatograms (d) of organic species retained in the spent catalysts of U-ZSM-5-0.03 and SH-ZSM-5 after the methanol conversion[81]
图12 具有不同b轴厚度的ZSM-5纳米片的正庚烷裂解性能:正庚烷的转化率作为运行时间的函数(a);废ZSM-5纳米片上焦炭含量的TG分析(b) [86]
Fig. 12 n-Heptane cracking performance of ZSM-5 nanosheets with different b-axis thicknesses: Conversion of n-heptane as a function of time on stream (a); TG analysis of coke content over spent ZSM-5 nanosheets (b)[86]
1 | Argauer R J, Landolt G R. Crystalline zeolite ZSM-5 and method of preparing the same: US3702886[P]. 1972-11-14. |
2 | Flanigen E M, Bennett J M, Grose R W, et al. Silicalite, a new hydrophobic crystalline silica molecular sieve[J]. Nature, 1978, 271(5645): 512-516. |
3 | 周彦妮. ZSM-5分子筛骨架铝分布及孔结构性质的调变[D]. 北京: 中国石油大学(北京), 2020. |
Zhou Y N. Tuning the framework aluminum distribution and pore structure of ZSM-5 zeolite[D]. Beijing: China University of Petroleum, 2020. | |
4 | Xing S Y, Liu K K, Wang T F, et al. Elucidation of the mechanism and structure-reactivity relationship in zeolite catalyzed alkylation of benzene with propylene[J]. Catalysis Science & Technology, 2021, 11(8): 2792-2804. |
5 | 叶娜, 孙琳, 王刃, 等. 纳米ZSM-5沸石上丁烯的芳构化反应[J]. 化工学报, 2007, 58(4): 913-918. |
Ye N, Sun L, Wang R, et al. Aromatization of butylenes over nano-sized ZSM-5 zeolite[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(4): 913-918. | |
6 | 刘冬梅, 翟玉春, 马健, 等. Na2CO3处理法制备微介孔ZSM-5沸石及其催化硫醚化性能[J]. 石油学报(石油加工), 2015, 31(1): 38-44. |
Liu D M, Zhai Y C, Ma J, et al. Preparation of micro-mesoporous ZSM-5 modified by Na2CO3 and its catalytic performance for sulfur etherification[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(1): 38-44. | |
7 | 张立东, 高俊华, 胡津仙, 等. Fe/ZSM-5的制备及其催化甲苯/甲醇烷基化反应行为[J]. 化工进展, 2009, 28(8): 1360-1364, 1381. |
Zhang L D, Gao J H, Hu J X, et al. Preparation of Fe/ZSM-5 and catalytic behavior for toluene alkylation with methanol[J]. Chemical Industry and Engineering Progress, 2009, 28(8): 1360-1364, 1381. | |
8 | 王日升, 彭鹏, 李婷婷, 等. 多级孔沸石分子筛的制备及其催化应用研究进展[J]. 化工进展, 2021, 40(4): 1849-1858. |
Wang R S, Peng P, Li T T, et al. Synthesis and application of hierarchical zeolite materials[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1849-1858. | |
9 | Qiao K, Shi X, Zhou F, et al. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Applied Catalysis A: General, 2017, 547: 274-282. |
10 | Tang X M, Chen W, Dong W J, et al. Framework aluminum distribution in ZSM-5 zeolite directed by organic structure-directing agents: a theoretical investigation[J]. Catalysis Today, 2022, 405/406: 101-110. |
11 | Dessau R M, Valyocsik E W, Goeke N H. Aluminum zoning in ZSM-5 as revealed by selective silica removal[J]. Zeolites, 1992, 12(7): 776-779. |
12 | Danilina N, Krumeich F, Castelanelli S A, et al. Where are the active sites in zeolites? Origin of aluminum zoning in ZSM-5[J]. The Journal of Physical Chemistry C, 2010, 114(14): 6640-6645. |
13 | Zhang Y J, Che S N. One-pot synthesis and formation mechanism of hollow ZSM-5[J]. Chemistry, 2019, 25(24): 6196-6202. |
14 | Lai Z P, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
15 | Yan Z G, Chen D, Huang L, et al. A theoretical insight into diffusion mechanism of benzene-methanol alkylation reaction in ZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2022, 337: 111926. |
16 | Kore R, Srivastava R, Satpati B. ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents[J]. Chemistry-A European Journal, 2014, 20(36): 11511-11521. |
17 | Zhan E S, Xiong Z P, Zhou Y, et al. Perpendicular intergrowth ZSM-5 plates with shortened 10-MR pores[J]. Chinese Journal of Catalysis, 2020, 41(7): 1132-1139. |
18 | Ma Y, Tang X M, Hu J Y, et al. Design of a small organic template for the synthesis of self-pillared pentasil zeolite nanosheets[J]. Journal of the American Chemical Society, 2022, 144(14): 6270-6277. |
19 | Zhang X Y, Liu D X, Xu D D, et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching[J]. Science, 2012, 336(6089): 1684-1687. |
20 | Ruiz-Zamora E, de la Rosa J R, Maldonado C S, et al. Siliceous self-pillared pentasil (SPP) zeolite with incorporated phosphorus groups in catalytic formation of butadiene by dehydra-decyclization of tetrahydrofuran: study of catalyst stability by NMR and REDOR analysis[J]. Applied Catalysis A: General, 2022, 640: 118648. |
21 | Mabande G T P, Ghosh S, Lai Z P, et al. Preparation of b-oriented MFI films on porous stainless steel substrates[J]. Industrial & Engineering Chemistry Research, 2005, 44(24): 9086-9095. |
22 | Choi J, Ghosh S, Lai Z P, et al. Uniformly a-oriented MFI zeolite films by secondary growth[J]. Angewandte Chemie, 2006, 45(7): 1154-1158. |
23 | Liu Y, Li Y S, Yang W S. Effective manipulation of the microstructure of zeolite film by hydrothermal pretreatment[J]. Journal of Materials Science, 2011, 46(11): 3942-3951. |
24 | Rangnekar N, Shete M, Agrawal K V, et al. 2D zeolite coatings: Langmuir-Schaefer deposition of 3 nm thick MFI zeolite nanosheets[J]. Angewandte Chemie, 2015, 54(22): 6571-6575. |
25 | Liu Y, Qiang W L, Ji T T, et al. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Science Advances, 2020, 6(7): eaay5993. |
26 | Li S, Wang X, Beving D, et al. Molecular sieving in a nanoporous b-oriented pure-silica-zeolite MFI monocrystal film[J]. Journal of the American Chemical Society, 2004, 126(13): 4122-4123. |
27 | Ji M L, Liu G Z, Chen C, et al. Synthesis of highly b-oriented ZSM-5 membrane on a rough surface modified simply with TiO2 by in situ crystallization[J]. Microporous and Mesoporous Materials, 2012, 155: 117-123. |
28 | Di J C, Zhang C, Yan W F, et al. Direct in situ crystallization of highly oriented silicalite-1 thin films on a surface sol-gel process modified substrate[J]. Microporous and Mesoporous Materials, 2011, 145(1/2/3): 104-107. |
29 | Lai Z, Tsapatsis M, Nicolich J. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers[J]. Advanced Functional Materials, 2004, 14(7): 716-729. |
30 | Bonilla G, Díaz I, Tsapatsis M, et al. Zeolite (MFI) crystal morphology control using organic structure-directing agents[J]. Chemistry of Materials, 2004, 16(26): 5697-5705. |
31 | Choi M, Na K, Kim J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
32 | Na K, Park W, Seo Y, et al. Disordered assembly of MFI zeolite nanosheets with a large volume of intersheet mesopores[J]. Chemistry of Materials, 2011, 23(5): 1273-1279. |
33 | Park W, Yu D, Na K, et al. Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets[J]. Chemistry of Materials, 2011, 23(23): 5131-5137. |
34 | Singh B K, Xu D D, Han L, et al. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant[J]. Chemistry of Materials, 2014, 26(24): 7183-7188. |
35 | Chang A, Hsiao H M, Chen T H, et al. Hierarchical silicalite-1 octahedra comprising highly-branched orthogonally-stacked nanoplates as efficient catalysts for vapor-phase Beckmann rearrangement[J]. Chemical Communications, 2016, 52(80): 11939-11942. |
36 | Shen X F, Mao W T, Ma Y H, et al. Mesoporous MFI zeolite with a 2D square structure directed by surfactants with an azobenzene tail group[J]. Chemistry, 2018, 24(34): 8615-8623. |
37 | Na K, Choi M, Park W, et al. Pillared MFI zeolite nanosheets of a single-unit-cell thickness[J]. Journal of the American Chemical Society, 2010, 132(12): 4169-4177. |
38 | Emdadi L, Wu Y Q, Zhu G H, et al. Dual template synthesis of meso- and microporous MFI zeolite nanosheet assemblies with tailored activity in catalytic reactions[J]. Chemistry of Materials, 2014, 26(3): 1345-1355. |
39 | Emdadi L, Liu D X. One-step dual template synthesis of hybrid lamellar-bulk MFI zeolite[J]. Journal of Materials Chemistry A, 2014, 2(33): 13388-13397. |
40 | Xu D D, Ma Y H, Jing Z F, et al. π-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets[J]. Nature Communications, 2014, 5(1): 1-9. |
41 | Xu D D, Jing Z F, Cao F L, et al. Surfactants with aromatic-group tail and single quaternary ammonium head for directing single-crystalline mesostructured zeolite nanosheets[J]. Chemistry of Materials, 2014, 26(15): 4612-4619. |
42 | Shan Z C, Wang H, Meng X J, et al. Designed synthesis of TS-1 crystals with controllable b-oriented length[J]. Chemical Communications, 2011, 47(3): 1048-1050. |
43 | 于幸. 形貌可控的MFI和CHA分子筛合成及其催化性能研究[D]. 上海: 上海大学, 2019. |
Yu X. Morphogy controllable synthesis of MFI and CHA zeolites and their catalytic performance[D]. Shanghai: Shanghai University, 2019. | |
44 | Ali Qureshi B, Lan X C, Arslan M T, et al. Highly active and selective nano H-ZSM-5 catalyst with short channels along b-axis for glycerol dehydration to acrolein[J]. Industrial & Engineering Chemistry Research, 2019, 58(28): 12611-12622. |
45 | Liu Y, Zhou X Z, Pang X M, et al. Improved para-xylene selectivity in meta-xylene isomerization over ZSM-5 crystals with relatively long b-axis length[J]. ChemCatChem, 2013, 5(6): 1517-1523. |
46 | Saito A, Foley H C. High-resolution nitrogen and argon adsorption on ZSM-5 zeolites: effects of cation exchange and SiAl[J]. Microporous Materials, 1995, 3(4/5): 543-556. |
47 | Llewellyn P L, Coulomb J P, Grillet Y, et al. Adsorption by MFI-type zeolites examined by isothermal microcalorimetry and neutron diffraction (2): Nitrogen and carbon monoxide[J]. Langmuir, 1993, 9(7): 1852-1856. |
48 | 刘艳. 若干重要的工业沸石分子筛晶体形貌调控及催化性能[D]. 杭州: 浙江大学, 2014. |
Liu Y. The morphology control of several important industrial zeolite crystals and their catalytic properties[D]. Hangzhou: Zhejiang University, 2014. | |
49 | Ali B, Lan X C, Arslan M T, et al. Controlling the selectivity and deactivation of H-ZSM-5 by tuning b-axis channel length for glycerol dehydration to acrolein[J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 127-136. |
50 | 李国栋, 宋宇, 张兰兰, 等. 不同硅铝比薄片状ZSM-5分子筛催化甲醇转化制丙烯[C]//第18届全国分子筛学术大会. 上海, 2015. |
Li G D, Song Y, Zhang L L, et al. Catalytic conversion of methanol to propylene over thin ZSM-5 molecular sieves with different silicon aluminum ratios[C]// The 18th National Molecular Sieve Academic Conference. Shanghai, 2015. | |
51 | Dose M E, Zhang K, Thompson J A, et al. Effect of crystal size on framework defects and water uptake in fluoride mediated silicalite-1[J]. Chemistry of Materials, 2014, 26(15): 4368-4376. |
52 | Zhang L L, Song Y, Li G D, et al. F-assisted synthesis of a hierarchical ZSM-5 zeolite for methanol to propylene reaction: a b-oriented thinner dimensional morphology[J]. RSC Advances, 2015, 5(75): 61354-61363. |
53 | Dai W J, Kouvatas C, Tai W S, et al. Platelike MFI crystals with controlled crystal faces aspect ratio[J]. Journal of the American Chemical Society, 2021, 143(4): 1993-2004. |
54 | Wu D, Yu X, Chen X Q, et al. Morphology-controlled synthesis of H-type MFI zeolites with unique stacked structures through a one-pot solvent-free strategy[J]. ChemSusChem, 2019, 12(16): 3871-3877. |
55 | Liu Z, Liu L J, Song H, et al. Hierarchical SAPO-11 preparation in the presence of glucose[J]. Materials Letters, 2015, 154: 116-119. |
56 | Lupulescu A I, Rimer J D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization[J]. Science, 2014, 344(6185): 729-732. |
57 | Lupulescu A I, Rimer J D. Tailoring silicalite-1 crystal morphology with molecular modifiers[J]. Angewandte Chemie, 2012, 51(14): 3345-3349. |
58 | Feng R, Yan X L, Hu X Y, et al. Direct synthesis of b-axis oriented H-form ZSM-5 zeolites with an enhanced performance in the methanol to propylene reaction[J]. Microporous and Mesoporous Materials, 2020, 302: 110246. |
59 | Jin L J, Xie T, Liu S B, et al. Controllable synthesis of chainlike hierarchical ZSM-5 templated by sucrose and its catalytic performance[J]. Catalysis Communications, 2016, 75: 32-36. |
60 | 肖霞. 多级孔纳米ZSM-5分子筛聚集体的制备调控及其正庚烷催化裂解性能研究[D]. 北京: 中国石油大学(北京), 2017. |
Xiao X. Study on the preparation and regulation of nano ZSM-5 zeolite aggregates with hierarchical porosity and their catalytic performances for the cracking of n-heptane[D]. Beijing: China University of Petroleum, 2017. | |
61 | Lupulescu A I, Kumar M, Rimer J D. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture[J]. Journal of the American Chemical Society, 2013, 135(17): 6608-6617. |
62 | Chen X X, Yan W F, Cao X J, et al. Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis[J]. Microporous and Mesoporous Materials, 2009, 119(1/2/3): 217-222. |
63 | Shang Z Y, Chen Y, Zhang L J, et al. Constructing single-crystalline hierarchical plate-like ZSM-5 zeolites with short b-axis length for catalyzing MTO reactions[J]. Inorganic Chemistry Frontiers, 2022, 9(7): 1456-1466. |
64 | Shang Z Y, Chen Y, Zhang L J, et al. Plate-like MFI crystal growth achieved by guanidine compounds[J]. Inorganic Chemistry Frontiers, 2022, 9(9): 2097-2103. |
65 | Ye J H, Bai L, Liu B Y, et al. Fabrication of a pillared ZSM-5 framework for shape selectivity of ethane dehydroaromatization[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7094-7106. |
66 | Zhang F, Liu Y, Sun Q, et al. Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10—20 nm thickness and partially blocked acidic sites[J]. Chemical Communications, 2017, 53(36): 4942-4945. |
67 | Ma Y H, Wang N, Qian W Z, et al. Molded MFI nanocrystals as a highly active catalyst in a methanol-to-aromatics process[J]. RSC Advances, 2016, 6(84): 81198-81202. |
68 | Ma Y H, Cai D L, Li Y R, et al. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study[J]. RSC Advances, 2016, 6(78): 74797-74801. |
69 | Yang J H, Gong K, Miao D Y, et al. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion[J]. Journal of Energy Chemistry, 2019, 35: 44-48. |
70 | Arslan M T, Ali Qureshi B, Ali Gilani S Z, et al. Single-step conversion of H2-deficient syngas into high yield of tetramethylbenzene[J]. ACS Catalysis, 2019, 9(3): 2203-2212. |
71 | Wu X Q, Xu S T, Wei Y X, et al. Evolution of C—C bond formation in the methanol-to-olefins process: from direct coupling to autocatalysis[J]. ACS Catalysis, 2018, 8(8): 7356-7361. |
72 | Hemelsoet K, van der Mynsbrugge J, De Wispelaere K, et al. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment[J]. ChemPhysChem, 2013, 14(8): 1526-1545. |
73 | Hu S, Shan J, Zhang Q, et al. Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite[J]. Applied Catalysis A: General, 2012, 445/446: 215-220. |
74 | Svelle S, Olsbye U, Lillerud K P, et al. Diphenylmethane-mediated transmethylation of methylbenzenes over H-zeolites[J]. Journal of the American Chemical Society, 2006, 128(17): 5618-5619. |
75 | Bjørgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species[J]. Journal of Catalysis, 2007, 249(2): 195-207. |
76 | Feng R, Yan X L, Hu X Y, et al. Phosphorus-modified b-axis oriented hierarchical ZSM-5 zeolites for enhancing catalytic performance in a methanol to propylene reaction[J]. Applied Catalysis A: General, 2020, 594: 117464. |
77 | Wang N, Sun W J, Hou Y L, et al. Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons[J]. Journal of Catalysis, 2018, 360: 89-96. |
78 | Wu L L, Magusin P C M M, Degirmenci V, et al. Acidic properties of nanolayered ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2014, 189: 144-157. |
79 | Meng L Q, Zhu X C, Mezari B, et al. On the role of acidity in bulk and nanosheet [T]MFI (T=Al3+, Ga3+, Fe3+, B3+) zeolites in the methanol-to-hydrocarbons reaction[J]. ChemCatChem, 2017, 9(20): 3942-3954. |
80 | 郭春垒, 于海斌, 王银斌, 等. 甲醇制汽油催化剂研究进展[J]. 化工进展, 2013, 32(S1): 115-121. |
Guo C L, Yu H B, Wang Y B, et al. Development of methanol to gasoline catalyst[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 115-121. | |
81 | Liu Z Y, Wu D, Ren S, et al. Solvent-free synthesis of c-axis oriented ZSM-5 crystals with enhanced methanol to gasoline catalytic activity[J]. ChemCatChem, 2016, 8(21): 3317-3322. |
82 | 魏晓丽, 成晓洁, 谢朝钢. 正庚烷在分子筛催化剂上催化裂解的链引发反应[J]. 石油学报(石油加工), 2013, 29(1): 13-19. |
Wei X L, Cheng X J, Xie C G. Initiation of chain reaction in catalytic pyrolysis of n-heptane over zeolite catalysts[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(1): 13-19. | |
83 | Hao J, Cheng D G, Chen F Q, et al. n-Heptane catalytic cracking on ZSM-5 zeolite nanosheets: effect of nanosheet thickness[J]. Microporous and Mesoporous Materials, 2021, 310: 110647. |
84 | Xiao X, Zhang Y Y, Jiang G Y, et al. Simultaneous realization of high catalytic activity and stability for catalytic cracking of n-heptane on highly exposed (010) crystal planes of nanosheet ZSM-5 zeolite[J]. Chemical Communications, 2016, 52(65): 10068-10071. |
85 | Zhang J X, Ren L M, Zhou A J, et al. Tailored synthesis of ZSM-5 nanosheets with controllable b-axis thickness and aspect ratio: strategy and growth mechanism[J]. Chemistry of Materials, 2022, 34(7): 3217-3226. |
86 | Guisnet M, Gnep N S, Morin S. Mechanisms of xylene isomerization over acidic solid catalysts[J]. Microporous and Mesoporous Materials, 2000, 35/36: 47-59. |
87 | Cortes A, Corma A. The mechanism of catalytic isomerization of xylenes: kinetic and isotopic studies[J]. Journal of Catalysis, 1978, 51(3): 338-344. |
88 | Zheng S R, Jentys A, Lercher J A. Xylene isomerization with surface-modified HZSM-5 zeolite catalysts: an in situ IR study[J]. Journal of Catalysis, 2006, 241(2): 304-311. |
89 | Degnan T F. The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries[J]. Journal of Catalysis, 2003, 216(1/2): 32-46. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[11] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[12] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[13] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[14] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[15] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 583
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1008
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||