1 |
Sethupathy S, Murillo Morales G, Gao L, et al. Lignin valorization: status, challenges and opportunities[J]. Bioresource Technology, 2022, 347: 126696.
|
2 |
Liao Y H, Koelewijn S F, van den Bossche G, et al. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science, 2020, 367(6484): 1385-1390.
|
3 |
Poveda-Giraldo J A, Solarte-Toro J, Alzate C A. The potential use of lignin as a platform product in biorefineries: a review[J]. Renewable & Sustainable Energy Reviews, 2021, 138: 110688.
|
4 |
Wang C G, Yang S Q, Song X B, et al. Novel solvent systems for biomass fractionation based on hydrogen-bond interaction: a minireview[J]. Advanced Sustainable Systems, 2020, 4(10): 2000085.
|
5 |
黄中艺, 史刘宾, 冯亚军, 等. 离子液体预处理对桉木热解半焦结构和反应性的影响[J]. 化工学报, 2021, 72(4): 2267-2275.
|
|
Huang Z Y, Shi L B, Feng Y J, et al. Effect of ionic liquid pretreatment on eucalyptus char structure and its reactivity[J]. CIESC Journal, 2021, 72(4): 2267-2275.
|
6 |
林泽英, 郑歆来, 龙金星, 等. 杂多酸离子液体催化木质素C—O键和苯环氧化裂解[J]. 化工学报, 2020, 71(12): 5541-5550.
|
|
Lin Z Y, Zheng X L, Long J X, et al. Oxidative cleavage of C—O and benzene ring in lignin catalyzed by polyoxometalate ionic liquids[J]. CIESC Journal, 2020, 71(12): 5541-5550.
|
7 |
赵金政, 周国辉, 刘晓敏. 离子液体在生物质溶解分离中的应用与机理研究[J]. 化工学报, 2021, 72(1): 247-258.
|
|
Zhao J Z, Zhou G H, Liu X M. Study on application and mechanism of ionic liquids in biomass dissolution and separation[J]. CIESC Journal, 2021, 72(1): 247-258.
|
8 |
Lei Z G, Dai C N, Chen B H. Gas solubility in ionic liquids[J]. Chemical Reviews, 2014, 114(2): 1289-1326.
|
9 |
Yang S Q, Lu X M, Yao H Y, et al. Efficient hydrodeoxygenation of lignin-derived phenols and dimeric ethers with synergistic [Bmim]PF6-Ru/SBA-15 catalysis under acid free conditions[J]. Green Chemistry, 2019, 21(3): 597-605.
|
10 |
王飞, 吴真, 张军, 等. 木质素原料制备烃类化合物的研究进展[J]. 林业工程学报, 2017, 2(3): 1-9.
|
|
Wang F, Wu Z, Zhang J, et al. Advances in production of hydrocarbon compounds from lignin[J]. China Forestry Science and Technology, 2017, 2(3): 1-9.
|
11 |
刘思洁, 陆燕玲, 黄家荣, 等. 离子液体催化生物质选择性转化[J]. 中国科学(化学), 2021, 51(10): 1382-1390.
|
|
Liu S J, Lu Y L, Huang J R, et al. Selective conversion of biomass catalyzed by ionic liquids[J]. Scientia Sinica Chimica, 2021, 51(10): 1382-1390.
|
12 |
Yan N, Yuan Y, Dykeman R, et al. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Brønsted acidic ionic liquids[J]. Angewandte Chemie International Edition, 2010, 49(32): 5549-5553.
|
13 |
Chen L, Xin J Y, Ni L L, et al. Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems[J]. Green Chemistry, 2016, 18(8): 2341-2352.
|
14 |
Chen L, Fink C, Fei Z F, et al. An efficient Pt nanoparticle-ionic liquid system for the hydrodeoxygenation of bio-derived phenols under mild conditions[J]. Green Chemistry, 2017, 19(22): 5435-5441.
|
15 |
Yang S Q, Cai G M, Lu X M, et al. Selective deoxygenation of lignin-derived phenols and dimeric ethers with protic ionic liquids[J]. Industrial & Engineering Chemistry Research, 2020, 59(11): 4864-4871.
|
16 |
Kasakov S, Shi H, Camaioni D M, et al. Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles[J]. Green Chemistry, 2015, 17(11): 5079-5090.
|
17 |
Chen B, He C Z, Cao M F, et al. Fabricating nickel phyllosilicate-like nanosheets to prepare a defect-rich catalyst for the one-pot conversion of lignin into hydrocarbons under mild conditions[J]. Green Chemistry, 2022, 24(2): 846-857.
|
18 |
Ren X H, Sun Z H, Lu J Q, et al. Hydrodeoxygenation of guaiacol to phenol using endogenous hydrogen induced by chemo-splitting of water over a versatile nano-porous Ni catalyst[J]. Green Chemistry, 2023, 25(5): 1955-1969.
|
19 |
Wang X H, Luo Y, Qian M, et al. Catalytic depolymerization of alkali lignin in ionic liquids on Pt-supported La2O3- S O 4 2 - /ZrO2 catalysts[J]. Sustainable Energy & Fuels, 2020, 4(3): 1409-1416.
|
20 |
Moos G, Emondts M, Bordet A, et al. Selective hydrogenation and hydrodeoxygenation of aromatic ketones to cyclohexane derivatives using a Rh@SILP catalyst[J]. Angewandte Chemie International Edition, 2020, 59(29): 11977-11983.
|
21 |
Goclik L, Walschus H, Bordet A, et al. Selective hydrodeoxygenation of acetophenone derivatives using a Fe25Ru75@SILP catalyst: a practical approach to the synthesis of alkyl phenols and anilines[J]. Green Chemistry, 2022, 24(7): 2937-2945.
|
22 |
Sun J, Konda N V S N M, Parthasarathi R, et al. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids[J]. Green Chemistry, 2017, 19(13): 3152-3163.
|
23 |
Jiang S N, Ji N, Diao X Y, et al. Vacancy engineering in transition metal sulfide and oxide catalysts for hydrodeoxygenation of lignin-derived oxygenates[J]. ChemSusChem, 2021, 14(20): 4377-4396.
|
24 |
Liu X H, Jia W D, Xu G Y, et al. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8594-8601.
|
25 |
Tang H B, Dai Q Q, Cao Y, et al. Hydrodeoxygenation of phenol and pyrolysis oil using Raney Ni and IL/Zr-SBA-15 catalysts[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105848.
|
26 |
Yue X K, Zhang L H, Sun L X, et al. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst[J]. Applied Catalysis B: Environmental, 2021, 293: 120243.
|
27 |
Jing Y X, Dong L, Guo Y, et al. Chemicals from lignin: a review of catalytic conversion involving hydrogen[J]. ChemSusChem, 2020, 13(17): 4181-4198.
|
28 |
Hong D Y, Miller S J, Agrawal P K, et al. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts[J]. Chemical Communications, 2010, 46(7): 1038-1040.
|
29 |
Chang J, Danuthai T, Dewiyanti S, et al. Hydrodeoxygenation of guaiacol over carbon-supported metal catalysts[J]. ChemCatChem, 2013, 5(10): 3041-3049.
|
30 |
Liu F J, Xue Z M, Zhao X H, et al. Catalytic deep eutectic solvents for highly efficient conversion of cellulose to gluconic acid with gluconic acid self-precipitation separation[J]. Chemical Communications, 2018, 54(48): 6140-6143.
|
31 |
Ramdin M, Balaji S P, Vicent-Luna J M, et al. Solubility of the precombustion gases CO2, CH4, CO, H2, N2, and H2S in the ionic liquid [bmim][Tf2N] from Monte Carlo simulations[J]. The Journal of Physical Chemistry C, 2014, 118(41): 23599-23604.
|
32 |
Zhang J H, Sun J M, Wang Y. Recent advances in the selective catalytic hydrodeoxygenation of lignin-derived oxygenates to arenes[J]. Green Chemistry, 2020, 22(4): 1072-1098.
|
33 |
Shangguan J N, Pfriem N, Chin Y H. Mechanistic details of C—O bond activation in and H-addition to guaiacol at water-Ru cluster interfaces[J]. Journal of Catalysis, 2019, 370: 186-199.
|
34 |
Ishikawa M, Tamura M, Nakagawa Y, et al. Demethoxylation of guaiacol and methoxybenzenes over carbon-supported Ru-Mn catalyst[J]. Applied Catalysis B: Environmental, 2016, 182: 193-203.
|