化工学报 ›› 2022, Vol. 73 ›› Issue (9): 3815-3827.DOI: 10.11949/0438-1157.20220304
收稿日期:
2022-03-02
修回日期:
2022-06-02
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
徐纯刚
作者简介:
张炜(1998—),男,硕士研究生,zhangwei@ms.giec.ac.cn
基金资助:
Wei ZHANG1,2(), Haoyang LI2,3, Chungang XU2(), Xiaosen LI2
Received:
2022-03-02
Revised:
2022-06-02
Online:
2022-09-05
Published:
2022-10-09
Contact:
Chungang XU
摘要:
水合物技术在能源和气候领域有着广阔的应用前景,有望成为应对能源挑战和气候变化的关键技术。但目前该技术存在着水合物生成速率慢、气体消耗量低的缺点,限制了水合物技术的工业化发展。从微观机理的角度,梳理和总结了关于气体水合物生成机制的理论观点,简述了驱动力和气体溶解度在水合物成核过程中的影响,介绍了表面活性剂和纳米粒子对水合物形成的影响机理以及常用的微观分析技术。分析发现,气体水合物的形成机制时至今日仍未有统一定论,对于促进剂作用机理的研究也不够充分,现有的微观分析手段难以捕捉水合物形成过程中的分子行为。这些问题限制了水合物技术向更快、更高效方面发展。探究水合物技术的相关机理,了解各类影响因素的作用原理,探索新的分析手段,将有助于突破水合物技术的瓶颈,为寻找更佳性能的促进剂、更高效地合成水合物探明道路。
中图分类号:
张炜, 李昊阳, 徐纯刚, 李小森. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827.
Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation[J]. CIESC Journal, 2022, 73(9): 3815-3827.
文献 | 微观分析技术手段 | 研究课题 |
---|---|---|
[ | 激光拉曼 | CH4水合物动力学分析 |
[ | 激光拉曼 | 新的笼占有率的计算方法 |
[ | X射线衍射 | 真空中水合物形成原位观测 |
[ | 激光拉曼+X射线衍射 | CH4水合物高压相变过程观测 |
[ | 激光拉曼+X射线衍射 | 客体分子分布情况 |
[ | 中子衍射 | CO水合物亚稳态研究 |
[ | 中子衍射 | 客体分子填充率 |
[ | 中子衍射 | 鉴定1-丙醇+甲烷水合物的结构 |
[ | 固体核磁共振 | 计算笼占有率与置换效率 |
[ | 固体核磁共振 | 验证水合物结构转变 |
[ | 激光拉曼+固体核磁共振 | 水合物置换机理与结构研究 |
[ | 激光拉曼+ X射线衍射+固体核磁共振 | 晶体结构、气体分布与笼占有率 |
[ | 低温扫描电镜 | sⅠ型与sⅡ型水合物表面观测 |
[ | 低温扫描电镜 | CH4和CO2水合物形态观测 |
[ | 磁共振成像 | 沉积物中CH4水合物形成分解观测 |
[ | 磁共振成像 | 气液界面CO2水合物膜形成观测 |
[ | X射线成像 | 煤介质中甲烷水合物形成原位成像 |
[ | X射线成像 | 砂质沉积物中甲烷水合物形态观测 |
[ | X射线成像 | 新的反应速率常数的计算方法 |
表1 水合物微观分析技术手段应用
Table 1 Application of hydrate micro-analysis technology
文献 | 微观分析技术手段 | 研究课题 |
---|---|---|
[ | 激光拉曼 | CH4水合物动力学分析 |
[ | 激光拉曼 | 新的笼占有率的计算方法 |
[ | X射线衍射 | 真空中水合物形成原位观测 |
[ | 激光拉曼+X射线衍射 | CH4水合物高压相变过程观测 |
[ | 激光拉曼+X射线衍射 | 客体分子分布情况 |
[ | 中子衍射 | CO水合物亚稳态研究 |
[ | 中子衍射 | 客体分子填充率 |
[ | 中子衍射 | 鉴定1-丙醇+甲烷水合物的结构 |
[ | 固体核磁共振 | 计算笼占有率与置换效率 |
[ | 固体核磁共振 | 验证水合物结构转变 |
[ | 激光拉曼+固体核磁共振 | 水合物置换机理与结构研究 |
[ | 激光拉曼+ X射线衍射+固体核磁共振 | 晶体结构、气体分布与笼占有率 |
[ | 低温扫描电镜 | sⅠ型与sⅡ型水合物表面观测 |
[ | 低温扫描电镜 | CH4和CO2水合物形态观测 |
[ | 磁共振成像 | 沉积物中CH4水合物形成分解观测 |
[ | 磁共振成像 | 气液界面CO2水合物膜形成观测 |
[ | X射线成像 | 煤介质中甲烷水合物形成原位成像 |
[ | X射线成像 | 砂质沉积物中甲烷水合物形态观测 |
[ | X射线成像 | 新的反应速率常数的计算方法 |
1 | Christiansen R L, Sloan E D. Mechanisms and kinetics of hydrate formation[J]. Annals of the New York Academy of Sciences, 1994, 715(1): 283-305. |
2 | Koh C A, Sum A K, Sloan E D. Gas hydrates: unlocking the energy from icy cages[J]. Journal of Applied Physics, 2009, 106(6): 061101. |
3 | Xu C G, Li X S, Yan K F, et al. Research progress in hydrate-based technologies and processes in China: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 1998-2013. |
4 | Dashti H, Yew L Z, Lou X. Recent advances in gas hydrate-based CO2 capture[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 195-207. |
5 | Xu C G, Chen Z Y, Cai J, et al. Study on pilot-scale CO2 separation from flue gas by the hydrate method[J]. Energy and Fuels, 2014, 28(2): 1242-1248. |
6 | Linga P, Kumar R, Englezos P. Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures[J]. Chemical Engineering Science, 2007, 62(16): 4268-4276. |
7 | Xu C G, Li X S. Research progress of hydrate-based CO2 separation and capture from gas mixtures[J]. RSC Adv., 2014, 4(35): 18301-18316. |
8 | Ma Z W, Zhang P, Bao H S, et al. Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1273-1302. |
9 | Sloan E D, Fleyfel F. A molecular mechanism for gas hydrate nucleation from ice[J]. AIChE Journal, 1991, 37(9): 1281-1292. |
10 | Christiansen R L, Sloan E D. A compact model for hydrate formation[C]// 74 Gas Processors Association Meeting. 1995. |
11 | Radhakrishnan R, Trout B L. A new approach for studying nucleation phenomena using molecular simulations: application to CO2 hydrate clathrates[J]. The Journal of Chemical Physics, 2002, 117(4): 1786-1796. |
12 | Guo G J, Li M, Zhang Y G, et al. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms[J]. Physical Chemistry Chemical Physics, 2009, 11(44): 10427. |
13 | Guo G J, Zhang Y G, Li M, et al. Can the dodecahedral water cluster naturally form in methane aqueous solutions? A molecular dynamics study on the hydrate nucleation mechanisms[J]. The Journal of Chemical Physics, 2008, 128(19): 194504. |
14 | Jacobson L C, Hujo W, Molinero V. Amorphous precursors in the nucleation of clathrate hydrates[J]. Journal of the American Chemical Society, 2010, 132(33): 11806-11811. |
15 | Jacobson L C, Hujo W, Molinero V. Nucleation pathways of clathrate hydrates: effect of guest size and solubility[J]. The Journal of Physical Chemistry. B, 2010, 114(43): 13796-13807. |
16 | Koh C A, Westacott R E, Zhang W, et al. Mechanisms of gas hydrate formation and inhibition[J]. Fluid Phase Equilibria, 2002, 194/195/196/197: 143-151. |
17 | Yan K F, Li X S, Chen Z Y, et al. The formation of CH4 hydrate in the slit nanopore between the smectite basal surfaces by molecular dynamics simulation[J]. Energy & Fuels, 2018, 32(6): 6467-6474. |
18 | Jiménez-Ángeles F, Firoozabadi A. Nucleation of methane hydrates at moderate subcooling by molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2014, 118(21): 11310-11318. |
19 | DeFever R S, Sarupria S. Nucleation mechanism of clathrate hydrates of water-soluble guest molecules[J]. The Journal of Chemical Physics, 2017, 147(20): 204503. |
20 | Vatamanu J, Kusalik P G. Observation of two-step nucleation in methane hydrates[J]. Physical Chemistry Chemical Physics: PCCP, 2010, 12(45): 15065-15072. |
21 | Arjun, Berendsen T A, Bolhuis P G. Unbiased atomistic insight in the competing nucleation mechanisms of methane hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19305-19310. |
22 | Zhang Z C, Walsh M R, Guo G J. Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(14): 8870-8876. |
23 | Bi Y F, Porras A, Li T S. Free energy landscape and molecular pathways of gas hydrate nucleation[J]. The Journal of Chemical Physics, 2016, 145(21): 211909. |
24 | Kashchiev D, Firoozabadi A. Nucleation of gas hydrates[J]. Journal of Crystal Growth, 2002, 243(3/4): 476-489. |
25 | Maeda N. Nucleation curve of carbon dioxide hydrate[J]. Energy Procedia, 2019, 158: 5928-5933. |
26 | Maeda N. Nucleation curves of methane hydrate from constant cooling ramp methods[J]. Fuel, 2018, 223: 286-293. |
27 | 杨新, 孙长宇, 粟科华, 等. 温度对多孔介质中甲烷水合物生成过程的影响[J]. 现代化工, 2009, 29(S1): 33-36. |
Yang X, Sun C Y, Su K H, et al. Effect of temperature on methane hydrate formation process in porous media[J]. Modern Chemical Industry, 2009, 29(S1): 33-36. | |
28 | Zatsepina O Y, Riestenberg D, McCallum S D, et al. Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology[J]. American Mineralogist, 2004, 89(8/9): 1254-1259. |
29 | Arjmandi M, Tohidi B, Danesh A, et al. Is subcooling the right driving force for testing low-dosage hydrate inhibitors? [J]. Chemical Engineering Science, 2005, 60(5): 1313-1321. |
30 | Shestakov V A, Sagidullin A K, Stoporev A S, et al. Analysis of methane hydrate nucleation in water-in-oil emulsions: isothermal vs constant cooling ramp method and new method for data treatment[J]. Journal of Molecular Liquids, 2020, 318: 114018. |
31 | Englezos P, Kalogerakis N, Dholabhai P D, et al. Kinetics of formation of methane and ethane gas hydrates[J]. Chemical Engineering Science, 1987, 42(11): 2647-2658. |
32 | Teng H, Yamasaki A. Hydrate formation on surfaces of buoyant liquid CO2 drops in a counterflow water tunnel[J]. Energy & Fuels, 1999, 13(3): 624-628. |
33 | Walsh M R, Beckham G T, Koh C A, et al. Methane hydrate nucleation rates from molecular dynamics simulations: effects of aqueous methane concentration, interfacial curvature, and system size[J]. The Journal of Physical Chemistry C, 2011, 115(43): 21241-21248. |
34 | Abay H K, Svartaas T M. Multicomponent gas hydrate nucleation: the effect of the cooling rate and composition[J]. Energy & Fuels, 2011, 25(1): 42-51. |
35 | Duan Z H, Møller N, Greenberg J, et al. The prediction of methane solubility in natural waters to high ionic strength from 0 to 250℃ and from 0 to 1600 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1451-1460. |
36 | Nada H. Growth mechanism of a gas clathrate hydrate from a dilute aqueous gas solution: a molecular dynamics simulation of a three-phase system[J]. The Journal of Physical Chemistry. B, 2006, 110(33): 16526-16534. |
37 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton: CRC Press, 2007. |
38 | Makogon Y F. Hydrates of Hydrocarbomns[M]. Oklahoma: Penn Well Publishing Company, 1997. |
39 | Sugaya M, Mori Y H. Behavior of clathrate hydrate formation at the boundary of liquid water and a fluorocarbon in liquid or vapor state[J]. Chemical Engineering Science, 1996, 51(13): 3505-3517. |
40 | Sun C Y, Peng B Z, Dandekar A, et al. Studies on hydrate film growth[J]. Annual Reports Section C (Physical Chemistry), 2010, 106: 77. |
41 | Knox W G, Hess M, Jones G E, et al. The hydrate process[J]. Chemical Engineering Progress, 1961, 57(2): 66-71. |
42 | Kumar A, Bhattacharjee G, Kulkarni B D, et al. Role of surfactants in promoting gas hydrate formation[J]. Industrial & Engineering Chemistry Research, 2015, 54(49): 12217-12232. |
43 | Dicharry C, Duchateau C, Asbaï H, et al. Carbon dioxide gas hydrate crystallization in porous silica gel particles partially saturated with a surfactant solution[J]. Chemical Engineering Science, 2013, 98: 88-97. |
44 | Sun C Y, Chen G J, Yang L Y. Interfacial tension of methane + water with surfactant near the hydrate formation conditions[J]. Journal of Chemical & Engineering Data, 2004, 49(4): 1023-1025. |
45 | 张学民, 李洋, 姚泽, 等. 表面活性剂对气体水合物生成过程的定量影响[J]. 过程工程学报, 2018, 18(2): 356-360. |
Zhang X M, Li Y, Yao Z, et al. Quantitative influence of surfactant on the formation process for gas hydrate[J]. The Chinese Journal of Process Engineering, 2018, 18(2): 356-360. | |
46 | 张保勇, 吴强, 王永敬. 表面活性剂对气体水合物生成诱导时间的作用机理[J]. 吉林大学学报(工学版), 2007, 37(1): 239-244. |
Zhang B Y, Wu Q, Wang Y J. Reaction mechanism between surfactant and induction time of gas hydrate formation[J]. Journal of Jilin University Engineering and Technology Edition, 2007, 37(1): 239-244. | |
47 | Zhong Y, Rogers R E. Surfactant effects on gas hydrate formation[J]. Chemical Engineering Science, 2000, 55(19): 4175-4187. |
48 | Profio P D, Arca S, Germani R, et al. Surfactant promoting effects on clathrate hydrate formation: are micelles really involved? [J]. Chemical Engineering Science, 2005, 60(15): 4141-4145. |
49 | Veluswamy H P, Chen J Y, Linga P. Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates[J]. Chemical Engineering Science, 2015, 126: 488-499. |
50 | Zhang J S, Lee S, Lee J W. Does SDS micellize under methane hydrate-forming conditions below the normal Krafft point? [J]. Journal of Colloid and Interface Science, 2007, 315(1): 313-318. |
51 | Watanabe K, Imai S, Mori Y H. Surfactant effects on hydrate formation in an unstirred gas/liquid system: an experimental study using HFC-32 and sodium dodecyl sulfate[J]. Chemical Engineering Science, 2005, 60(17): 4846-4857. |
52 | Wang F, Jia Z Z, Luo S J, et al. Effects of different anionic surfactants on methane hydrate formation[J]. Chemical Engineering Science, 2015, 137: 896-903. |
53 | Gayet P, Dicharry C, Marion G, et al. Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter[J]. Chemical Engineering Science, 2005, 60(21): 5751-5758. |
54 | Daniel-David D, Guerton F, Dicharry C, et al. Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: influence of pressure, temperature, gas composition and water-soluble surfactants[J]. Chemical Engineering Science, 2015, 132: 118-127. |
55 | Molokitina N S, Nesterov A N, Podenko L S, et al. Carbon dioxide hydrate formation with SDS: further insights into mechanism of gas hydrate growth in the presence of surfactant[J]. Fuel, 2019, 235: 1400-1411. |
56 | Zhang G D, Zhang R C, Wang F. Fast formation kinetics of methane hydrates loaded by silver nanoparticle coated activated carbon (Ag-NP@AC)[J]. Chemical Engineering Journal, 2021, 417: 129206. |
57 | Li J P, Liang D Q, Guo K H, et al. Formation and dissociation of HFC134a gas hydrate in nano-copper suspension[J]. Energy Conversion and Management, 2006, 47(2): 201-210. |
58 | Ma S H, Pan Z, Li P, et al. Experimental study on preparation of natural gas hydrate by crystallization[J]. Ship Building of China, 2017, 58(1): 226-232. |
59 | Wang X J, Zhu D S, Yang S. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids[J]. Chemical Physics Letters, 2009, 470(1/2/3): 107-111. |
60 | Arjang S, Manteghian M, Mohammadi A. Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa[J]. Chemical Engineering Research and Design, 2013, 91(6): 1050-1054. |
61 | Rahmati-Abkenar M, Manteghian M, Pahlavanzadeh H. Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles[J]. Chemical Engineering Research and Design, 2017, 120: 325-332. |
62 | Cheng Z C, Xu H Z, Wang S J, et al. Effect of nanoparticles as a substitute for kinetic additives on the hydrate-based CO2 capture[J]. Chemical Engineering Journal, 2021, 424: 130329. |
63 | 赵国昌, 曹磊, 宋丽萍, 等. 纳米流体导热机理研究分析[J]. 沈阳航空航天大学学报, 2013, 30(4): 7-11. |
Zhao G C, Cao L, Song L P, et al. Analysis of research on heat conduction mechanisms of nanofluids[J]. Journal of Shenyang Aerospace University, 2013, 30(4): 7-11. | |
64 | 刘妮, 洪春芳, 柳秀婷. 纳米粒子对CO2水合物导热性能的影响[J]. 化工学报, 2017, 68(9): 3404-3408. |
Liu N, Hong C F, Liu X T. Effects of nanoparticles on CO2 hydrate thermal conductivity[J]. CIESC Journal, 2017, 68(9): 3404-3408. | |
65 | Said S, Govindaraj V, Herri J M, et al. A study on the influence of nanofluids on gas hydrate formation kinetics and their potential: application to the CO2 capture process[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 95-108. |
66 | Pasieka J, Coulombe S, Servio P. Investigating the effects of hydrophobic and hydrophilic multi-wall carbon nanotubes on methane hydrate growth kinetics[J]. Chemical Engineering Science, 2013, 104: 998-1002. |
67 | Sum A K, Burruss R C, Sloan E D. Measurement of clathrate hydrates via Raman spectroscopy[J]. The Journal of Physical Chemistry B, 1997, 101(38): 7371-7377. |
68 | Yoon J H, Kawamura T, Yamamoto Y, et al. Transformation of methane hydrate to carbon dioxide hydrate: in situ Raman spectroscopic observations[J]. The Journal of Physical Chemistry A, 2004, 108(23): 5057-5059. |
69 | Truong-Lam H S, Seo S, Kim S, et al. In situ Raman study of the formation and dissociation kinetics of methane and methane/propane hydrates[J]. Energy & Fuels, 2020, 34(5): 6288-6297. |
70 | Chen W Q, Hartman R L. Methane hydrate intrinsic dissociation kinetics measured in a microfluidic system by means of in situ Raman spectroscopy[J]. Energy & Fuels, 2018, 32(11): 11761-11771. |
71 | Chou I M, Sharma A, Burruss R C, et al. Transformations in methane hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25): 13484-13487. |
72 | Kadobayashi H, Hirai H, Ohfuji H, et al. Transition mechanism of sH to filled-ice Ih structure of methane hydrate under fixed pressure condition[J]. Journal of Physics: Conference Series, 2017, 950: 042044. |
73 | Kadobayashi H, Hirai H, Ohfuji H, et al. Structural evolution of methane hydrate under pressures up to 134 GPa[J]. The Journal of Chemical Physics, 2020, 152(19): 194308. |
74 | Hirai H, Kadobayashi H, Hirao N, et al. Time-resolved X-ray diffraction and Raman studies of the phase transition mechanisms of methane hydrate[J]. The Journal of Chemical Physics, 2015, 142(2): 024707. |
75 | Liu C H, Wu Q, Zhang B Y, et al. Raman spectroscopy study on ternary model coal mine methane hydrates[J]. ACS Omega, 2021, 6(16): 10709-10714. |
76 | Zhou X B, Zang X Y, Long Z, et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide[J]. Scientific Reports, 2021, 11: 9197. |
77 | Stackelberg M V, Müller H R. On the structure of gas hydrates[J]. The Journal of Chemical Physics, 1951, 19(10): 1319-1320. |
78 | Lu H L, Moudrakovski I, Riedel M, et al. Occurrence and structural characterization of gas hydrates associated with a cold vent field, offshore Vancouver Island[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B10): B10204. |
79 | Udachin K A, Ratcliffe C I, Ripmeester J A. Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements[J]. The Journal of Physical Chemistry B, 2001, 105(19): 4200-4204. |
80 | Lee J W, Kim D Y, Lee H E. Phase behavior and structure transition of the mixed methane and nitrogen hydrates[J]. Korean Journal of Chemical Engineering, 2006, 23(2): 299-302. |
81 | Hester K C, Huo Z, Ballard A L, et al. Thermal expansivity for sI and sII clathrate hydrates[J]. The Journal of Physical Chemistry. B, 2007, 111(30): 8830-8835. |
82 | Takeya S, Hondoh T, Uchida T. In situ observation of CO2 hydrate by X-ray diffraction[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 973-982. |
83 | Takeya S, Shimada W, Kamata Y, et al. In situ X-ray diffraction measurements of the self-preservation effect of CH4 hydrate[J]. The Journal of Physical Chemistry A, 2001, 105(42): 9756-9759. |
84 | Wilkinson M K, Wollan E O, Koehler W C. Neutron diffraction[J]. Annual Review of Nuclear Science, 1961, 11: 303-348. |
85 | Carvalho P H B B, Mace A, Andersson O, et al. Elucidating the guest disorder in structure Ⅱ argon hydrate—a neutron diffraction isotopic substitution study[J]. Journal of Solid State Chemistry, 2020, 285: 121220. |
86 | Klapproth A, Piltz R O, Kennedy S J, et al. Kinetics of sⅡ and mixed sⅠ/sⅡ, gas hydrate growth for a methane/propane mixture using neutron diffraction[J]. The Journal of Physical Chemistry C, 2019, 123(5): 2703-2715. |
87 | Chiari G, Ferraris G. The water molecule in crystalline hydrates studied by neutron diffraction[J]. Acta Crystallographica Section B, 1982, 38(9): 2331-2341. |
88 | Chazallon B, Kuhs W F. In situ structural properties of N 2 -, O 2 -, and air-clathrates by neutron diffraction[J]. The Journal of Chemical Physics, 2002, 117(1): 308-320. |
89 | Kuhs W F, Chazallon B, Radaelli P G, et al. Cage occupancy and compressibility of deuterated N2-clathrate hydrate by neutron diffraction[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 1997, 29(1): 65-77. |
90 | Rojas Y, Lou X. Instrumental analysis of gas hydrates properties[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 310-323. |
91 | Liu Y Z, Zhang L X, Yang L, et al. Behaviors of CO2 hydrate formation in the presence of acid-dissolvable organic matters[J]. Environmental Science & Technology, 2021, 55(9): 6206-6213. |
92 | Pandey J S, Karantonidis C, Ouyang Q, et al. Cyclic depressurization-driven enhanced CH4 recovery after CH4-CO2 hydrate swapping[J]. Energy & Fuels, 2021, 35(11): 9521-9537. |
93 | Li Z, Zhong D L, Zheng W Y, et al. Morphology and kinetic investigation of TBAB/TBPB semiclathrate hydrates formed with a CO2+CH4 gas mixture[J]. Journal of Crystal Growth, 2019, 511: 79-88. |
94 | Wang S J, Cheng Z C, Liu Q B, et al. Microscope insights into gas hydrate formation and dissociation in sediments by using microfluidics[J]. Chemical Engineering Journal, 2021, 425: 130633. |
95 | Kuhs W F, Klapproth A, Gotthardt F, et al. The formation of meso- and macroporous gas hydrates[J]. Geophysical Research Letters, 2000, 27(18): 2929-2932. |
96 | Zhao J F, Liu Y Z, Yang L, et al. Organics-coated nanoclays further promote hydrate formation kinetics[J]. The Journal of Physical Chemistry Letters, 2021, 12(13): 3464-3467. |
97 | Denning S, Lucero J M, Majid A A A, et al. Porous organic cage CC3: an effective promoter for methane hydrate formation for natural gas storage[J]. The Journal of Physical Chemistry C, 2021, 125(37): 20512-20521. |
98 | Huang X, Li Z C, Deng Y J, et al. Effect of micro- and nanobubbles on the crystallization of THF hydrate based on the observation by atomic force microscopy[J]. The Journal of Physical Chemistry C, 2020, 124(25): 13966-13975. |
99 | 彭力, 李维, 宁伏龙, 等. 基于原子力显微镜的四氢呋喃水合物微观力学测试[J]. 中国科学: 技术科学, 2020, 50(1): 31-40. |
Peng L, Li W, Ning F L, et al. Micromechanical tests of tetrahydrofuran hydrate using atomic force microscope[J]. Scientia Sinica (Technologica), 2020, 50(1): 31-40. | |
100 | Hirai S, Kuwano K, Ogawa K, et al. High-pressure magnetic resonance imaging up to 40 MPa[J]. Magnetic Resonance Imaging, 2000, 18(2): 221-225. |
101 | Moudrakovski I L, Ratcliffe C I, McLaurin G E, et al. Hydrate layers on ice particles and superheated ice: a 1H NMR microimaging study[J]. The Journal of Physical Chemistry A, 1999, 103(26): 4969-4972. |
102 | Zuniga A R, Li M, Aman Z M, et al. NMR-compatible sample cell for gas hydrate studies in porous media[J]. Energy & Fuels, 2020, 34(10): 12388-12398. |
103 | Lv J C, Jiang L L, Mu H L, et al. MRI investigation of hydrate pore habits and dynamic seepage characteristics in natural gas hydrates sand matrix[J]. Fuel, 2021, 303: 121287. |
104 | Takeya S, Honda K, Kawamura T, et al. Imaging and density mapping of tetrahydrofuran clathrate hydrates by phase-contrast X-ray computed tomography[J]. Applied Physics Letters, 2007, 90(8): 081920. |
105 | Takeya S, Honda K, Yoneyama A, et al. Observation of low-temperature object by phase-contrast X-ray imaging: nondestructive imaging of air clathrate hydrates at 233K[J]. Review of Scientific Instruments, 2006, 77(5): 053705. |
106 | Takeya S, Yoneyama A, Ueda K, et al. Nondestructive imaging of anomalously preserved methane clathrate hydrate by phase contrast X-ray imaging[J]. The Journal of Physical Chemistry C, 2011, 115(32): 16193-16199. |
107 | Kerkar P B, Horvat K, Jones K W, et al. Imaging methane hydrates growth dynamics in porous media using synchrotron X-ray computed microtomography[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4759-4768. |
108 | Noguchi N, Yonezawa T, Yokoi Y, et al. Infrared and Raman spectroscopic study of methane clathrate hydrates at low temperatures and high pressures: dynamics and cage occupancy of methane[J]. The Journal of Physical Chemistry C, 2021, 125(1): 189-200. |
109 | Hiraga Y, Sasagawa T, Yamamoto S, et al. A precise deconvolution method to derive methane hydrate cage occupancy ratios using Raman spectroscopy[J]. Chemical Engineering Science, 2020, 214: 115361. |
110 | Bauer R P C, Ravichandran A, Tse J S, et al. In situ X-ray diffraction study on hydrate formation at low temperature in a high vacuum[J]. The Journal of Physical Chemistry C, 2021, 125(48): 26892-26900. |
111 | Beam J, Yang J, Liu J, et al. Elasticity of methane hydrate phases at high pressure[J]. The Journal of Chemical Physics, 2016, 144(15): 154501. |
112 | Grim R G, Kerkar P B, Shebowich M, et al. Synthesis and characterization of sI clathrate hydrates containing hydrogen[J]. The Journal of Physical Chemistry C, 2012, 116(34): 18557-18563. |
113 | Pétuya C, Martin-Gondre L, Aurel P, et al. Unraveling the metastability of the sⅠ and sⅡ carbon monoxide hydrate with a combined DFT-neutron diffraction investigation[J]. The Journal of Chemical Physics, 2019, 150(18): 184705. |
114 | Hoshikawa A, Matsukawa T, Ishigaki T. Evaluation of filling rate of methane in methane-propane hydrate by neutron powder diffraction[J]. Physica B: Condensed Matter, 2018, 551: 274-277. |
115 | Cha M J, Shin K, Lee H E. Structure identification of binary 1-propanol+methane hydrate using neutron powder diffraction[J]. Korean Journal of Chemical Engineering, 2017, 34(9): 2514-2518. |
116 | Cha M J, Shin K, Lee H E, et al. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy[J]. Environmental Science & Technology, 2015, 49(3): 1964-1971. |
117 | Mok J, Choi W, Seo Y. Time-dependent observation of a cage-specific guest exchange in sI hydrates for CH4 recovery and CO2 sequestration[J]. Chemical Engineering Journal, 2020, 389: 124434. |
118 | Xu C G, Cai J, Lin F H, et al. Raman analysis on methane production from natural gas hydrate by carbon dioxide-methane replacement[J]. Energy, 2015, 79: 111-116. |
119 | Kumar R, Englezos P, Moudrakovski I, et al. Structure and composition of CO2/H2 and CO2/H2/C3H8 hydrate in relation to simultaneous CO2 capture and H2 production[J]. AIChE Journal, 2009, 55(6): 1584-1594. |
120 | Sun J Y, Li C F, Hao X L, et al. Study of the surface morphology of gas hydrate[J]. Journal of Ocean University of China, 2020, 19(2): 331-338. |
121 | Klapproth A, Goreshnik E, Staykova D, et al. Structural studies of gas hydrates[J]. Canadian Journal of Physics, 2003, 81(1/2): 503-518. |
122 | Zhang Y Y, Zhao Y C, Lei X, et al. Quantitatively study on methane hydrate formation/decomposition process in hydrate-bearing sediments using low-field MRI[J]. Fuel, 2020, 262: 116555. |
123 | Zhao Y C, Lei X, Zheng J N, et al. High resolution MRI studies of CO2 hydrate formation and dissociation near the gas-water interface[J]. Chemical Engineering Journal, 2021, 425: 131426. |
124 | Nikitin V V, Fokin M I, Dugarov G A, et al. Dynamic in situ imaging of methane hydrate formation in coal media[J]. Fuel, 2021, 298: 120699. |
125 | Le T X, Bornert M, Aimedieu P, et al. An experimental investigation on methane hydrate morphologies and pore habits in sandy sediment using synchrotron X-ray computed tomography[J]. Marine and Petroleum Geology, 2020, 122: 104646. |
126 | Liang H Y, Yang L, Song Y C, et al. New approach for determining the reaction rate constant of hydrate formation via X-ray computed tomography[J]. The Journal of Physical Chemistry C, 2021, 125(1): 42-48. |
[1] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[2] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[3] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[4] | 黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
[5] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[6] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[7] | 张苗, 杨洪海, 尹勇, 徐悦, 沈俊杰, 卢心诚, 施伟刚, 王军. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146. |
[8] | 李文祥, 王钧禾, 郝怡静, 周乐平. 淬火初温影响疏水表面沸腾传热特性的实验研究[J]. 化工学报, 2022, 73(12): 5394-5404. |
[9] | 董晓锐, 王凯, 骆广生. 金纳米颗粒的微反应连续合成[J]. 化工学报, 2021, 72(7): 3823-3831. |
[10] | 陈婷婷, 尹炯婷, 许映杰. 离子液体在纳米ZnO材料制备中的研究进展[J]. 化工学报, 2021, 72(5): 2436-2447. |
[11] | 朱丹丹, 许雄文, 刘金平, 卢炯. 混合润湿性图案化铜基表面冷凝换热性能研究[J]. 化工学报, 2021, 72(5): 2528-2546. |
[12] | 齐聪, 李可傲, 李春阳. 微肋结构对纳米流体绕流圆柱热性能的影响[J]. 化工学报, 2021, 72(4): 2006-2017. |
[13] | 刘昌会, 刘红莉, 张天键, 饶中浩. 基于尿素/氯化胆碱低共熔溶剂体系纳米流体制备及其热物性研究[J]. 化工学报, 2021, 72(3): 1333-1341. |
[14] | 张天永, 杨坤龙, 崔现宝, 李彬, 宋禹昕, 姜爽. 橡胶促进剂NS的绿色合成工艺与应用研究进展[J]. 化工学报, 2021, 72(2): 876-885. |
[15] | 孙大吟, 叶一兰, 梁福鑫, 杨振忠. Janus颗粒乳化剂若干研究进展[J]. 化工学报, 2021, 72(12): 6203-6215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||