化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6203-6215.DOI: 10.11949/0438-1157.20211277
收稿日期:
2021-09-02
修回日期:
2021-11-20
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
杨振忠
作者简介:
孙大吟(1989—),男,博士,基金资助:
Dayin SUN(),Yilan YE,Fuxin LIANG,Zhenzhong YANG()
Received:
2021-09-02
Revised:
2021-11-20
Online:
2021-12-05
Published:
2021-12-22
Contact:
Zhenzhong YANG
摘要:
Janus颗粒乳化剂兼具分子表面活性剂的双亲特性及均质固体颗粒的Pickering效应,能高效稳定乳化体系,为界面操控及其功能化、功能物质递送到界面提供新工具。以发展Janus颗粒乳化剂为工具,以软物质界面工程为对象,将为材料学与多领域的交叉融合提供新机遇。组成、尺寸、微结构是精细调控Janus颗粒乳化剂的关键。已实现了磁响应性Janus颗粒的规模化制备,在乳化体系的深度处理方面显示了优势。近年来新发展的高分子单链颗粒及其杂化胶体极大丰富了Janus材料种类,为微尺度工程提供新手段。多尺度Janus颗粒乳化剂可作为强有力工具用于解决界面工程问题。
中图分类号:
孙大吟, 叶一兰, 梁福鑫, 杨振忠. Janus颗粒乳化剂若干研究进展[J]. 化工学报, 2021, 72(12): 6203-6215.
Dayin SUN, Yilan YE, Fuxin LIANG, Zhenzhong YANG. Some recent advances in Janus particulate emulsifiers[J]. CIESC Journal, 2021, 72(12): 6203-6215.
1 | Casagrande C, Fabre P, Raphaël E, et al. “Janus beads”: realization and behaviour at water/oil interfaces[J]. Europhysics Letters (EPL), 1989, 9(3): 251-255. |
2 | de Gennes P G. Soft matter[J]. Reviews of Modern Physics, 1992, 64(3): 645-648. |
3 | Liang F X, Zhang C L, Yang Z Z. Rational design and synthesis of Janus composites[J]. Advanced Materials, 2014, 26(40): 6944-6949. |
4 | Jiang S, Granick S. Janus Particle Synthesis, Self-assembly and Applications[M]. Cambridge: Royal Society of Chemistry, 2012. |
5 | Walther A, Müller A H E. Janus particles: synthesis, self-assembly, physical properties, and applications[J]. Chemical Reviews, 2013, 113(7): 5194-5261. |
6 | Hong L, Cacciuto A, Luijten E, et al. Clusters of charged Janus spheres[J]. Nano Letters, 2006, 6(11): 2510-2514. |
7 | Yan J, Chaudhary K, Bae S C, et al. Colloidal ribbons and rings from Janus magnetic rods[J]. Nature Communications, 2013, 4: 1516. |
8 | Nie L, Liu S Y, Shen W M, et al. One-pot synthesis of amphiphilic polymeric Janus particles and their self-assembly into supermicelles with a narrow size distribution[J]. Angewandte Chemie, 2007, 119(33): 6437-6440. |
9 | Cheng L, Zhang G Z, Zhu L, et al. Nanoscale tubular and sheetlike superstructures from hierarchical self-assembly of polymeric Janus particles[J]. Angewandte Chemie International Edition, 2008, 47(52): 10171-10174. |
10 | Chen Q, Whitmer J K, Jiang S, et al. Supracolloidal reaction kinetics of Janus spheres[J]. Science, 2011, 331(6014): 199-202. |
11 | Hong L, Cacciuto A, Luijten E, et al. Clusters of amphiphilic colloidal spheres[J]. Langmuir, 2008, 24(3): 621-625. |
12 | Yan J, Bloom M, Bae S C, et al. Linking synchronization to self-assembly using magnetic Janus colloids[J]. Nature, 2012, 491(7425): 578-581. |
13 | Gangwal S, Cayre O J, Velev O D. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields[J]. Langmuir, 2008, 24(23): 13312-13320. |
14 | Gangwal S, Cayre O J, Bazant M Z, et al. Induced-charge electrophoresis of metallodielectric particles[J]. Physical Review Letters, 2008, 100(5): 058302. |
15 | Gangwal S, Pawar A, Kretzschmar I, et al. Programmed assembly of metallodielectric patchy particles in external AC electric fields[J]. Soft Matter, 2010, 6(7): 1413-1418. |
16 | Dendukuri D, Hatton T A, Doyle P S. Synthesis and self-assembly of amphiphilic polymeric microparticles[J]. Langmuir, 2007, 23(8): 4669-4674. |
17 | Zerrouki D, Baudry J, Pine D, et al. Chiral colloidal clusters[J]. Nature, 2008, 455(7211): 380-382. |
18 | Chen Q, Bae S C, Granick S. Directed self-assembly of a colloidal kagome lattice[J]. Nature, 2011, 469(7330): 381-384. |
19 | Fan X, Yang J, Loh X J, et al. Polymeric Janus nanoparticles: recent advances in synthetic strategies, materials properties, and applications[J]. Macromolecular Rapid Communications, 2019, 40(5): 1800203. |
20 | Zhang C, Liu B, Tang C, et al. Large scale synthesis of Janus submicron sized colloids by wet etching anisotropic ones[J]. Chemical Communications, 2010, 46(25): 4610-4612. |
21 | Kim J W, Larsen R J, Weitz D A. Synthesis of nonspherical colloidal particles with anisotropic properties[J]. Journal of the American Chemical Society, 2006, 128(44): 14374-14377. |
22 | Yu X T, Sun Y J, Liang F X, et al. Triblock Janus particles by seeded emulsion polymerization[J]. Macromolecules, 2019, 52(1): 96-102. |
23 | Tang C, Zhang C L, Liu J G, et al. Large scale synthesis of Janus submicrometer sized colloids by seeded emulsion polymerization[J]. Macromolecules, 2010, 43(11): 5114-5120. |
24 | Ramsden W. Separation of solids in the surface-layers of solutions and “suspensions” (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account[J]. Proceedings of the Royal Society of London, 1903, 72: 156-164. |
25 | Pickering S U. CXCVI: emulsions[J]. Journal of the Chemical Society, Transactions, 1907, 91: 2001-2021. |
26 | Binks B P. Particles as surfactants—similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1/2): 21-41. |
27 | Lu P J, Weitz D A. Colloidal particles: crystals, glasses, and gels[J]. Annual Review of Condensed Matter Physics, 2013, 4(1): 217-233. |
28 | Facal P, Cheng C L, Sedev R, et al. van der Waals emulsions: emulsions stabilized by surface-inactive, hydrophilic particles via van der Waals attraction[J]. Angewandte Chemie International Edition, 2018, 57(30): 9510-9514. |
29 | Ballard N, Bon S A F. Hybrid biological spores wrapped in a mesh composed of interpenetrating polymer nanoparticles as “patchy” Pickering stabilizers[J]. Polymer Chemistry, 2011, 2(4): 823-827. |
30 | Jiang S, Schultz M J, Chen Q, et al. Solvent-free synthesis of Janus colloidal particles[J]. Langmuir, 2008, 24(18): 10073-10077. |
31 | Chen X, Xu J J, Sun D Y, et al. Emulsion interfacial synthesis of polymer/inorganic Janus particles[J]. Langmuir, 2019, 35(18): 6032-6038. |
32 | Liu B, Wei W, Qu X Z, et al. Janus colloids formed by biphasic grafting at a Pickering emulsion interface[J]. Angewandte Chemie International Edition, 2008, 47(21): 3973-3975. |
33 | Chen Y, Yang H L, Zhang C L, et al. Janus cages of bilayered polymer–inorganic composites[J]. Macromolecules, 2013, 46(10): 4126-4130. |
34 | Caruso F, Caruso R A, Moehwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science, 1998, 282(5391): 1111-1114. |
35 | Liang F X, Liu J G, Zhang C L, et al. Janus hollow spheres by emulsion interfacial self-assembled sol-gel process[J]. Chemical Communications, 2011, 47(4): 1231-1233. |
36 | Liang F X, Shen K, Qu X Z, et al. Inorganic Janus nanosheets[J]. Angewandte Chemie International Edition, 2011, 50(10): 2379-2382. |
37 | Kuhn W, Balmer G. Crosslinking of single linear macromolecules[J]. Journal of Polymer Science, 1962, 57(165): 311-319. |
38 | Chen R W, Berda E B. 100th anniversary of macromolecular science viewpoint: re-examining single-chain nanoparticles[J]. ACS Macro Letters, 2020, 9(12): 1836-1843. |
39 | Xiang D, Chen X, Tang L, et al. Electrostatic-mediated intramolecular cross-linking polymers in concentrated solutions[J]. CCS Chemistry, 2019, 1(5): 407-430. |
40 | Xiang D, Jiang B Y, Liang F X, et al. Single-chain Janus nanoparticle by metallic complexation[J]. Macromolecules, 2020, 53(3): 1063-1069. |
41 | Lang F Z, Xiang D, Wang J W, et al. Janus colloidal dimer by intramolecular cross-linking in concentrated solutions[J]. Macromolecules, 2020, 53(6): 2271-2278. |
42 | Wang J, Chen X, Lang F, et al. Large scale synthesis of single-chain/colloid Janus nanoparticles with tunable composition[J]. Chemical Communications, 2020, 56(27): 3875-3878. |
43 | Yao X H, Jing J Y, Liang F X, et al. Polymer-Fe3O4 composite Janus nanoparticles[J]. Macromolecules, 2016, 49(24): 9618-9625. |
44 | Jing J Y, Jiang B Y, Liang F X, et al. Bottlebrush-colloid Janus nanoparticles[J]. ACS Macro Letters, 2019, 8(6): 737-742. |
45 | Binks B P, Fletcher P D I. Particles adsorbed at the oil–water interface: a theoretical comparison between spheres of uniform wettability and “Janus” particles[J]. Langmuir, 2001, 17(16): 4708-4710. |
46 | Glaser N, Adams D J, Böker A, et al. Janus particles at liquid-liquid interfaces[J]. Langmuir, 2006, 22(12): 5227-5229. |
47 | Wu D, Chew J W, Honciuc A. Polarity reversal in homologous series of surfactant-free Janus nanoparticles: toward the next generation of amphiphiles[J]. Langmuir, 2016, 32(25): 6376-6386. |
48 | Wu D L, Binks B P, Honciuc A. Modeling the interfacial energy of surfactant-free amphiphilic Janus nanoparticles from phase inversion in Pickering emulsions[J]. Langmuir, 2018, 34(3): 1225-1233. |
49 | Wu D L, Honciuc A. Design of Janus nanoparticles with pH-triggered switchable amphiphilicity for interfacial applications[J]. ACS Applied Nano Materials, 2018, 1(1): 471-482. |
50 | Tang C, Zhang C L, Sun Y J, et al. Janus anisotropic hybrid particles with tunable size from patchy composite spheres[J]. Macromolecules, 2013, 46(1): 188-193. |
51 | Sun Y J, Liang F X, Qu X Z, et al. Robust reactive Janus composite particles of snowman shape[J]. Macromolecules, 2015, 48(8): 2715-2722. |
52 | Sun D Y, Si Y, Song X M, et al. Bi-continuous emulsion using Janus particles[J]. Chemical Communications, 2019, 55(32): 4667-4670. |
53 | 李涛, 陈科, Jure D. 双连续型乳液凝胶(Bijel)的研究进展 [J]. 物理学报, 2018, 67(14): 144701. |
Li T, Chen K, Jure D. Research progress of bicontinuous interfacially jammed emulsion gel (Bijel)[J]. Acta Physica Sinica, 2018, 67(14): 144701. | |
54 | Tu F Q, Lee D. Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties[J]. Journal of the American Chemical Society, 2014, 136(28): 9999-10006. |
55 | Hwang Y H, Jeon K, Ryu S A, et al. Temperature-responsive Janus particles as microsurfactants for on-demand coalescence of emulsions[J]. Small, 2020, 16(49): 2005159. |
56 | Wang Y H, Zhang C L, Tang C, et al. Emulsion interfacial synthesis of asymmetric Janus particles[J]. Macromolecules, 2011, 44(10): 3787-3794. |
57 | Yang H L, Liang F X, Chen Y, et al. Lotus leaf inspired robust superhydrophobic coating from strawberry-like Janus particles[J]. NPG Asia Materials, 2015, 7(4): e176. |
58 | Tanaka T, Okayama M, Minami H, et al. Dual stimuli-responsive “mushroom-like” Janus polymer particles as particulate surfactants[J]. Langmuir, 2010, 26(14): 11732-11736. |
59 | Kirillova A, Marschelke C, Synytska A. Hybrid Janus particles: challenges and opportunities for the design of active functional interfaces and surfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9643-9671. |
60 | Cao W, Huang R, Qi W, et al. Self-assembly of amphiphilic Janus particles into monolayer capsules for enhanced enzyme catalysis in organic media[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 465-473. |
61 | Wang J H, Huang R L, Qi W, et al. Oriented enzyme immobilization at the oil/water interface enhances catalytic activity and recyclability in a Pickering emulsion[J]. Langmuir, 2017, 33(43): 12317-12325. |
62 | Yi F Y, Xu F G, Gao Y, et al. Macrocellular polymer foams from water in oil high internal phase emulsion stabilized solely by polymer Janus nanoparticles: preparation and their application as support for Pd catalyst[J]. RSC Advances, 2015, 5(50): 40227-40235. |
63 | Crossley S, Faria J, Shen M, et al. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface[J]. Science, 2010, 327(5961): 68-72. |
64 | Yang T, Wei L J, Jing L Y, et al. Dumbbell-shaped bi-component mesoporous Janus solid nanoparticles for biphasic interface catalysis[J]. Angewandte Chemie International Edition, 2017, 56(29): 8459-8463. |
65 | Zhao Z G, Liang F X, Zhang G L, et al. Dually responsive Janus composite nanosheets[J]. Macromolecules, 2015, 48(11): 3598-3603. |
66 | Zhang M, Wei L, Chen H, et al. Compartmentalized droplets for continuous flow liquid-liquid interface catalysis[J]. Journal of the American Chemical Society, 2016, 138(32): 10173-10183. |
67 | Zhang M, Ettelaie R, Yan T, et al. Ionic liquid droplet microreactor for catalysis reactions not at equilibrium[J]. Journal of the American Chemical Society, 2017, 139(48): 17387-17396. |
68 | Zhang X M, Hou Y T, Ettelaie R, et al. Pickering emulsion-derived liquid-solid hybrid catalyst for bridging homogeneous and heterogeneous catalysis[J]. Journal of the American Chemical Society, 2019, 141(13): 5220-5230. |
69 | Yan S, Zou H B, Chen S, et al. Janus mesoporous silica nanosheets with perpendicular mesochannels: affording highly accessible reaction interfaces for enhanced biphasic catalysis[J]. Chemical Communications, 2018, 54(74): 10455-10458. |
70 | Zhang S, Deng Q C, Shangguan H J, et al. Design and preparation of carbon nitride-based amphiphilic Janus N-doped carbon/MoS2 nanosheets for interfacial enzyme nanoreactor[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12227-12237. |
71 | Yang J Y, Wang J L, Liu Y J, et al. Stimuli-responsive Janus mesoporous nanosheets towards robust interfacial emulsification and catalysis[J]. Materials Horizons, 2020, 7(12): 3242-3249. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[6] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[7] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[8] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[9] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[10] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[11] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[12] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[13] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[14] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[15] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||