1 |
过增元. 对流换热的物理机制及其控制: 速度场与热流场的协同[J]. 科学通报, 2000, (19): 2118-2122.
|
|
Guo Z Y. The physical mechanism and control of convection heat transfer: the synergy between velocity field and heat flow field[J]. Chinese Sci. Bull., 2000, (19): 2118-2122.
|
2 |
Fakheri A. Heat exchanger efficiency[J]. J. Heat Trans. -T. ASME, 2007, 129(9): 1268-1276.
|
3 |
朱冬生, 钱颂文. 强化传热技术及其设计应用[J]. 化工装备技术, 2000, 6: 1-9.
|
|
Zhu D S, Qian S W. Enhanced heat transfer technology and its design and application[J]. Chemical Equipment Technology, 2000, 6: 1-9.
|
4 |
Kukulka D J, Smith R, Fuller K G. Development and evaluation of enhanced heat transfer tubes[J]. Appl. Therm. Eng., 2011, 31(13): 2141-2145.
|
5 |
宣益民, 李强. 纳米流体强化传热研究[J]. 工程热物理学报, 2000, 21(4): 466-470.
|
|
Xuan Y M, Li Q. Heat transfer enhancement of nanofluids[J]. J. Eng. Thermophys., 2000, 21(4): 466-470.
|
6 |
张正国, 燕志鹏, 方晓明, 等. 纳米技术在强化传热中应用的研究进展[J]. 化工进展, 2011, 30(1): 34-39.
|
|
Zhang Z G, Yan Z P, Fang X M, et al. Research development of applications of nanotechnology in heat transfer enhancment[J]. Chem. Ind. Eng. Pro., 2011, 30(1): 34-39.
|
7 |
Buongiorno J. Convective transport in nanofluids[J]. J. Heat Trans., 2006, 128(3): 240-250.
|
8 |
Choi S U S. Nanofluids: from vision to reality through research[J]. J. Heat Trans., 2009, 131(3): 033106.
|
9 |
宣益民. 纳米流体能量传递理论与应用[J]. 中国科学: 技术科学, 2014, 44(3): 269-279.
|
|
Xuan Y M. An overview on nanofluids and applications[J]. Sci. Sin. Tech., 2014, 44(3): 269–279.
|
10 |
Saidur R, Leong K Y, Mohammed H A. A review on applications and challenges of nanofluids[J]. Renew. Sust. Energ. Rev., 2011, 15(3): 1646-1668.
|
11 |
Liu C H, Qiao Y, Lv B R, et al. Glycerol based binary solvent: thermal properties study and its application in nanofluids[J]. Int. Commun. Heat Mass Tran., 2020, 112: 104491.
|
12 |
Chen H S, He Y R, Zhu J W, et al. Rheological and heat transfer behaviour of the ionic liquid, [C4mim][NTf2][J]. International Journal of Heat and Fluid Flow, 2008, 29(1): 149-155.
|
13 |
Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization[J]. Nat. Commun., 2014, 5: 4449.
|
14 |
Mahian O, Kianifar A, Kalogirou S A, et al. A review of the applications of nanofluids in solar energy[J]. Int. J. Heat Mass Trans., 2013, 57(2): 582-594.
|
15 |
Bahiraei M, Rahmani R, Yaghoobi A, et al. Recent research contributions concerning use of nanofluids in heat exchangers: a critical review[J]. Appl. Therm. Eng., 2018, 133: 137-159.
|
16 |
Nieto de Castro C A, Lourenço M J V, Ribeiro A P C, et al. Thermal properties of ionic liquids and IoNanofluids of imidazolium and pyrrolidinium liquids[J]. J. Chem. Eng. Data, 2010, 55(2): 653-661.
|
17 |
Musiał M, Kuczak M, Mrozek-Wilczkiewicz A, et al. Trisubstituted imidazolium-based ionic liquids as innovative heat transfer media in sustainable energy systems[J]. ACS Sust. Chem. Eng., 2018, 6(6): 7960-7968.
|
18 |
顾彦龙, 石峰, 邓友全. 室温离子液体: 一类新型的软介质和功能材料[J]. 科学通报, 2004, (6): 515-521.
|
|
Gu Y L, Shi F, Deng Y Q. Room temperature ionic liquids: a new type of soft media and functional materials[J]. Chinese Sci. Bull., 2004, (6): 515-521.
|
19 |
张晓春, 张锁江, 左勇, 等. 离子液体的制备及应用[J]. 化学进展, 2010, 22(7): 1499-1508.
|
|
Zhang X C, Zhang S J, Zuo Y, et al. Preparation and applications of ionic liquids[J]. Prog. Chem., 2010, 22(7): 1499-1508.
|
20 |
Zhang Q H, Vigier K D O, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chem. Soc. Rev., 2012, 41(21): 7108-7146.
|
21 |
Liu C H, Fang H, Qiao Y, et al. Properties and heat transfer mechanistic study of glycerol/choline chloride deep eutectic solvents based nanofluids[J]. Int. J. Heat Mass Trans., 2019, 138: 690-698.
|
22 |
Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chem. Rev., 2014, 114(21): 11060-11082.
|
23 |
Liu C H, Fang H, Liu X J, et al. Novel silica filled deep eutectic solvent based nanofluids for energy transportation[J]. ACS Sust. Chem. Eng., 2019, 7(24): 20159-20169.
|
24 |
Fang Y K, Osama M, Rashmi W, et al. Synthesis and thermo-physical properties of deep eutectic solvent-based graphene nanofluids[J]. Nanotechnology, 2016, 27(7): 075702.
|
25 |
Chen Y Y, Walvekar R, Khalid M, et al. Stability and thermophysical studies on deep eutectic solvent based carbon nanotube nanofluid[J]. Mater. Res. Express, 2017, 4(7): 075028.
|
26 |
Simeonov S P, Afonso C A M. Basicity and stability of urea deep eutectic mixtures[J]. RSC Adv., 2016, 6(7): 5485-5490.
|
27 |
D'Agostino C, Harris R C, Abbott A P, et al. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy[J]. Phys. Chem. Chem. Phys., 2011, 13(48): 21383-21391.
|
28 |
Ashworth C R, Matthews R P, Welton T, et al. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent[J]. Phys. Chem. Chem. Phys., 2016, 18(27): 18145-18160.
|
29 |
Oster K, Hardacre C, Jacquemin J, et al. Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids)[J]. J. Mol. Liq., 2018, 253: 326-339.
|
30 |
Gilmore M, Swadzba-Kwasny M, Holbrey J D. Thermal properties of choline chloride/urea system studied under moisture-free atmosphere[J]. J. Chem. Eng. Data, 2019, 64(12): 5248-5255.
|
31 |
叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究[J]. 物理学报, 2014, 63(15): 303-309.
|
|
Ye Z Q, Cao B Y, Guo Z Y. Study on thermal characteristics of phonons in graphene[J]. Acta Phys. Sin., 2014, 63(15): 303-309.
|