化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3448-3460.DOI: 10.11949/0438-1157.20220268
王悦琳1(), 晁伟2, 蓝晓程1, 莫志朋2, 佟淑环2, 王铁峰1()
收稿日期:
2022-03-01
修回日期:
2022-06-07
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
王铁峰
作者简介:
王悦琳(1997—),女,博士研究生,wangyuel19@mails.tsinghua.edu.cn
Yuelin WANG1(), Wei CHAO2, Xiaocheng LAN1, Zhipeng MO2, Shuhuan TONG2, Tiefeng WANG1()
Received:
2022-03-01
Revised:
2022-06-07
Online:
2022-08-05
Published:
2022-09-06
Contact:
Tiefeng WANG
摘要:
采用合成气生物发酵法制乙醇具有反应条件温和、产物选择性高、原料来源广泛、低碳可持续发展等优势,是一种具有前景的可再生能源新型生产工艺。文章综述了合成气发酵法制乙醇的微生物种类及对应的适宜操作条件,分析了合成气发酵法制乙醇的Wood-Ljungdahl代谢途径;总结了合成气的广泛来源;分析讨论了过程工艺参数如合成气组成及压力、pH、温度、培养基组分、气液传质对合成气发酵的影响;指出合成气发酵法制乙醇面临的底物传质性能差、乙醇收率低等关键问题,比较了典型反应器在传质方面的差异,归纳了传质强化方法;总结了合成气发酵法制乙醇的工业化进展, 并提出了未来的发展方向。
中图分类号:
王悦琳, 晁伟, 蓝晓程, 莫志朋, 佟淑环, 王铁峰. 合成气生物发酵法制乙醇的研究进展[J]. 化工学报, 2022, 73(8): 3448-3460.
Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation[J]. CIESC Journal, 2022, 73(8): 3448-3460.
菌种 | 分离来源 | 适宜温度/℃ | 适宜pH | 产物 |
---|---|---|---|---|
嗜中温菌种 | ||||
Alkalibaculum bacchi[ | 农场土壤 | 37 | 8.0~8.5 | 乙酸、乙醇 |
Acetobacterium woodi[ | — | 30 | 6.8 | 乙酸 |
Butyribacterium methylotrophicum[ | 下水道污泥 | 37~40 | 7.5 | 乙酸、乙醇、丁酸、丁醇 |
Clostridium aceticum[ | — | 30 | 8.5 | 乙酸 |
Clostridium autoethanogenum[ | 兔粪 | 37 | 5.8~6.0 | 乙醇、乙酸、2,3-丁二醇 |
Clostridium carboxidivorans[ | — | 37 | 5.2 | 乙醇、丁醇 |
Clostridium carboxidivorans P7[ | 污水池沉积物 | 38 | 5.0~7.0 | 乙酸、乙醇、丁醇 |
Clostridium coskatii[ | — | 37 | 5.8~6.5 | 乙酸、乙醇 |
Clostridium drakei[ | 沉积物 | 25~30 | 3.6~6.8 | 乙酸、乙醇、丁酸 |
Clostridium ljungdahlii[ | 鸡粪 | 37 | 6.0 | 乙醇、乙酸 |
Clostridium ragsdalei P11[ | 鸭塘底泥 | 37 | 6.3 | 乙醇 |
Clostridium scatologenes[ | — | 37~40 | 5.4~7.0 | 乙酸、乙醇、丁酸 |
Mesophilic bacterium P7[ | 农业潟湖 | 37 | 5.7~5.8 | 乙醇 |
嗜热菌种 | ||||
Moorella sp. HUC22-1[ | 地下热泥浆 | 55 | 6.3 | 乙酸 |
Moorella thermoautotrophica[ | — | 58 | 6.1 | 乙酸 |
表1 合成气发酵法用微生物
Table 1 Microorganisms for syngas fermentation
菌种 | 分离来源 | 适宜温度/℃ | 适宜pH | 产物 |
---|---|---|---|---|
嗜中温菌种 | ||||
Alkalibaculum bacchi[ | 农场土壤 | 37 | 8.0~8.5 | 乙酸、乙醇 |
Acetobacterium woodi[ | — | 30 | 6.8 | 乙酸 |
Butyribacterium methylotrophicum[ | 下水道污泥 | 37~40 | 7.5 | 乙酸、乙醇、丁酸、丁醇 |
Clostridium aceticum[ | — | 30 | 8.5 | 乙酸 |
Clostridium autoethanogenum[ | 兔粪 | 37 | 5.8~6.0 | 乙醇、乙酸、2,3-丁二醇 |
Clostridium carboxidivorans[ | — | 37 | 5.2 | 乙醇、丁醇 |
Clostridium carboxidivorans P7[ | 污水池沉积物 | 38 | 5.0~7.0 | 乙酸、乙醇、丁醇 |
Clostridium coskatii[ | — | 37 | 5.8~6.5 | 乙酸、乙醇 |
Clostridium drakei[ | 沉积物 | 25~30 | 3.6~6.8 | 乙酸、乙醇、丁酸 |
Clostridium ljungdahlii[ | 鸡粪 | 37 | 6.0 | 乙醇、乙酸 |
Clostridium ragsdalei P11[ | 鸭塘底泥 | 37 | 6.3 | 乙醇 |
Clostridium scatologenes[ | — | 37~40 | 5.4~7.0 | 乙酸、乙醇、丁酸 |
Mesophilic bacterium P7[ | 农业潟湖 | 37 | 5.7~5.8 | 乙醇 |
嗜热菌种 | ||||
Moorella sp. HUC22-1[ | 地下热泥浆 | 55 | 6.3 | 乙酸 |
Moorella thermoautotrophica[ | — | 58 | 6.1 | 乙酸 |
合成气来源 | CO/% | CO2/% | H2/% | N2/% | CH4/% |
---|---|---|---|---|---|
煤燃烧气化[ | 31.8~38.5 | 1~6 | 48~66.5 | 0.4~6.4 | 0.3~0.5 |
天然气转化[ | 17.5 | 11.6 | 63.6 | 5.7 | 0.9 |
木质纤维素气化[ | 14.7 | 16.5 | 4.4 | 56.8 | 4.2 |
表2 典型合成气来源及组分
Table 2 Sources and components of typical syngas
合成气来源 | CO/% | CO2/% | H2/% | N2/% | CH4/% |
---|---|---|---|---|---|
煤燃烧气化[ | 31.8~38.5 | 1~6 | 48~66.5 | 0.4~6.4 | 0.3~0.5 |
天然气转化[ | 17.5 | 11.6 | 63.6 | 5.7 | 0.9 |
木质纤维素气化[ | 14.7 | 16.5 | 4.4 | 56.8 | 4.2 |
工业尾气类型 | CO/% | CO2/% | H2/% | N2/% | CH4/% |
---|---|---|---|---|---|
电石炉尾气 | 78.97 | 3.22 | 6.96 | 10.34 | 0.013 |
碳化硅尾气 | 70~90 | 2~3 | 1~5 | 1~3 | 2~4 |
黄磷尾气 | 75~85 | 0.4 | 10~15 | — | 4 |
醋酸尾气 | 81 | 3 | 12 | 2 | 1.5 |
铁合金尾气 | 65~75 | 10~15 | 5~10 | 5~10 | 0~2 |
转炉煤气 | 60~80 | 15~22 | 0~2.5 | 10~20 | — |
合成氨驰放气 | 25~45 | — | 2.5~8 | 41~64 | — |
高炉煤气 | 25~30 | 9~12 | 1.5~3 | 55~60 | — |
炭黑尾气 | 9~13 | 2~3 | 9~12 | 36~38 | 0.2~0.8 |
焦炉煤气 | 5.5~7 | 1~3 | 54~59 | 3~5 | 25~30 |
表3 典型工业过程的尾气组分[5,39-44]
Table 3 Tail gas components of typical industrial processes[5,39-44]
工业尾气类型 | CO/% | CO2/% | H2/% | N2/% | CH4/% |
---|---|---|---|---|---|
电石炉尾气 | 78.97 | 3.22 | 6.96 | 10.34 | 0.013 |
碳化硅尾气 | 70~90 | 2~3 | 1~5 | 1~3 | 2~4 |
黄磷尾气 | 75~85 | 0.4 | 10~15 | — | 4 |
醋酸尾气 | 81 | 3 | 12 | 2 | 1.5 |
铁合金尾气 | 65~75 | 10~15 | 5~10 | 5~10 | 0~2 |
转炉煤气 | 60~80 | 15~22 | 0~2.5 | 10~20 | — |
合成氨驰放气 | 25~45 | — | 2.5~8 | 41~64 | — |
高炉煤气 | 25~30 | 9~12 | 1.5~3 | 55~60 | — |
炭黑尾气 | 9~13 | 2~3 | 9~12 | 36~38 | 0.2~0.8 |
焦炉煤气 | 5.5~7 | 1~3 | 54~59 | 3~5 | 25~30 |
反应器类型 | 转速/(r/min) | 菌种 | 气源 | kLa / h-1 | 文献 |
---|---|---|---|---|---|
TBR | n/a | n/a | 合成气 | 22.0 | [ |
TBR | n/a | R. rubrum | 合成气 | 55.5 | [ |
TBR | n/a | SRB mixed culture | 合成气 | kLa(CO) = 121, kLa(H2) = 335 | [ |
TBR | n/a | C. ljungdahlii | 合成气 | kLa(CO) = 137 | [ |
TBR | n/a | C. ragsdalei | 合成气 | kLa(CO) = 664 | [ |
CSTR | n/a | n/a | 合成气 | 38.0 | [ |
CSTR | 200 | B. methylotrophicum | CO | 14.2 | [ |
CSTR | 300 | SRB mixed culture | 合成气 | kLa(CO) = 31, kLa(H2) = 75 | [ |
CSTR | 300 | R. rubrum | 合成气 | kLa(CO) = 28.1 | [ |
CSTR | 450 | R. rubrum | 合成气 | kLa(CO) = 101 | [ |
STR(微气泡喷射器) | 200 | B. methylotrophicum | CO | 90.6 | [ |
STR(微气泡喷射器) | 300 | SRB mixed culture | 合成气 | kLa(CO) = 104, kLa(H2) = 190 | [ |
STR | 300 | C. ljungdahlii | CO | 14.9 | [ |
STR | 700 | C. ljungdahlii | CO | 35.5 | [ |
STR | 400 | n/a | CO | 75.6 | [ |
STR | 500 | R. rubrum | 合成气 | 71.8 | [ |
BCR | n/a | n/a | CO | 72 | [ |
HFMR | n/a | C. carboxidivorans | 合成气 | kLa(CO) = 1100 | [ |
HFMR | n/a | n/a | CO | 947 | [ |
HFMR | n/a | n/a | 空气 | 1062 | [ |
MBR | n/a | C. carboxidivorans | 合成气 | kLa(CO) = 450 | [ |
CSTR | 900 | n/a | 空气 | 116 | [ |
GLR | n/a | n/a | CO | kLa(CO) = 130 | [ |
HFMR+CSTR | 90 | n/a | 合成气 | kLa(CO) = 385 | [ |
HFMR+CSTR | 200 | n/a | CO | 1096.2 | [ |
MBR+CSTR | n/a | n/a | CO | 450 | [ |
表4 合成气发酵过程中典型反应器kLa值
Table 4 kLa value of typical reactors in syngas fermentation
反应器类型 | 转速/(r/min) | 菌种 | 气源 | kLa / h-1 | 文献 |
---|---|---|---|---|---|
TBR | n/a | n/a | 合成气 | 22.0 | [ |
TBR | n/a | R. rubrum | 合成气 | 55.5 | [ |
TBR | n/a | SRB mixed culture | 合成气 | kLa(CO) = 121, kLa(H2) = 335 | [ |
TBR | n/a | C. ljungdahlii | 合成气 | kLa(CO) = 137 | [ |
TBR | n/a | C. ragsdalei | 合成气 | kLa(CO) = 664 | [ |
CSTR | n/a | n/a | 合成气 | 38.0 | [ |
CSTR | 200 | B. methylotrophicum | CO | 14.2 | [ |
CSTR | 300 | SRB mixed culture | 合成气 | kLa(CO) = 31, kLa(H2) = 75 | [ |
CSTR | 300 | R. rubrum | 合成气 | kLa(CO) = 28.1 | [ |
CSTR | 450 | R. rubrum | 合成气 | kLa(CO) = 101 | [ |
STR(微气泡喷射器) | 200 | B. methylotrophicum | CO | 90.6 | [ |
STR(微气泡喷射器) | 300 | SRB mixed culture | 合成气 | kLa(CO) = 104, kLa(H2) = 190 | [ |
STR | 300 | C. ljungdahlii | CO | 14.9 | [ |
STR | 700 | C. ljungdahlii | CO | 35.5 | [ |
STR | 400 | n/a | CO | 75.6 | [ |
STR | 500 | R. rubrum | 合成气 | 71.8 | [ |
BCR | n/a | n/a | CO | 72 | [ |
HFMR | n/a | C. carboxidivorans | 合成气 | kLa(CO) = 1100 | [ |
HFMR | n/a | n/a | CO | 947 | [ |
HFMR | n/a | n/a | 空气 | 1062 | [ |
MBR | n/a | C. carboxidivorans | 合成气 | kLa(CO) = 450 | [ |
CSTR | 900 | n/a | 空气 | 116 | [ |
GLR | n/a | n/a | CO | kLa(CO) = 130 | [ |
HFMR+CSTR | 90 | n/a | 合成气 | kLa(CO) = 385 | [ |
HFMR+CSTR | 200 | n/a | CO | 1096.2 | [ |
MBR+CSTR | n/a | n/a | CO | 450 | [ |
反应器类型 | 气源组成/% | 菌种 | 乙醇产率 | 醇/酸 | 文献 |
---|---|---|---|---|---|
MBR | CO 20 H2 5 CO2 15 N2 60 | C.carboxidivorans P7 | 4.89 g/(L·d) | 2.1 | [ |
BCR | CO 20 H2 5 CO2 15 N2 60 | C. carboxidivorans P7 | 1.54 g/(L·d) | 1.36 | [ |
STR | CO 55 H2 20 CO2 10 Ar 15 | C. ljungdahlii | 6.5 g/L (3weeks) | 1.53 | [ |
STR | CO 20 H2 5 CO2 15 N2 60 | C. ragsdalei P11 | 25.26 g/L (59days) | 6.8 | [ |
CSTR-BC | CO 60 H2 35 CO2 5 | C. ljungdahlii ERI-2 | 0.136 mmol/(L·min) | 3 | [ |
CSTR | CO 55 H2 20 CO2 10 Ar 15 | C. ljungdahlii | 48 g/L (560 h) | 21 | [ |
CSTR | CO 55 H2 20 CO2 10 Ar 15 | C. ljungdahlii | 1.7 mmol/(L·h) | 1.55 | [ |
HFMBR | CO 20 H2 5 CO2 15 Ar 60 | Clostridium carboxidivorans P7 | 3.12 mmol/(L·h) | — | [ |
TBR | CO 38 H2 28.5 CO2 28.5 N2 5 | Clostridium ragsdalei | 5.7 g/L (1662 h) | 0.46 | [ |
CSTR | CO 15 H2 5 CO2 15 N2 60 | Clostridium strain P11 | 0.58 mmol/(L·h) | — | [ |
TBR | CO 38 H2 28.5 CO2 28.5 N2 5 | Clostridium ragsdalei | 3.43 mmol/(L·h) | — | [ |
表5 不同反应器类型及发酵条件下产物结果总结
Table 5 Summary of products under different reactor configurations and fermentation conditions
反应器类型 | 气源组成/% | 菌种 | 乙醇产率 | 醇/酸 | 文献 |
---|---|---|---|---|---|
MBR | CO 20 H2 5 CO2 15 N2 60 | C.carboxidivorans P7 | 4.89 g/(L·d) | 2.1 | [ |
BCR | CO 20 H2 5 CO2 15 N2 60 | C. carboxidivorans P7 | 1.54 g/(L·d) | 1.36 | [ |
STR | CO 55 H2 20 CO2 10 Ar 15 | C. ljungdahlii | 6.5 g/L (3weeks) | 1.53 | [ |
STR | CO 20 H2 5 CO2 15 N2 60 | C. ragsdalei P11 | 25.26 g/L (59days) | 6.8 | [ |
CSTR-BC | CO 60 H2 35 CO2 5 | C. ljungdahlii ERI-2 | 0.136 mmol/(L·min) | 3 | [ |
CSTR | CO 55 H2 20 CO2 10 Ar 15 | C. ljungdahlii | 48 g/L (560 h) | 21 | [ |
CSTR | CO 55 H2 20 CO2 10 Ar 15 | C. ljungdahlii | 1.7 mmol/(L·h) | 1.55 | [ |
HFMBR | CO 20 H2 5 CO2 15 Ar 60 | Clostridium carboxidivorans P7 | 3.12 mmol/(L·h) | — | [ |
TBR | CO 38 H2 28.5 CO2 28.5 N2 5 | Clostridium ragsdalei | 5.7 g/L (1662 h) | 0.46 | [ |
CSTR | CO 15 H2 5 CO2 15 N2 60 | Clostridium strain P11 | 0.58 mmol/(L·h) | — | [ |
TBR | CO 38 H2 28.5 CO2 28.5 N2 5 | Clostridium ragsdalei | 3.43 mmol/(L·h) | — | [ |
1 | García-Aparicio M P, Ballesteros I, González A, et al. Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis[J]. Applied Biochemistry and Biotechnology, 2006, 129(1/2/3): 278-288. |
2 | 许敬亮, 常春, 韩秀丽, 等. 合成气乙醇发酵技术研究进展[J]. 化工进展, 2019, 38(1): 586-597. |
Xu J L, Chang C, Han X L, et al. Research progress on bioethanol production technologies through syngas fermentation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 586-597. | |
3 | Phillips J R, Clausen E C, Gaddy J L. Synthesis gas as substrate for the biological production of fuels and chemicals[J]. Applied Biochemistry and Biotechnology, 1994, 45(1): 145-157. |
4 | Munasinghe P C, Khanal S K. Biomass-derived syngas fermentation into biofuels: opportunities and challenges[J]. Bioresource Technology, 2010, 101(13): 5013-5022. |
5 | 牟晨璐, 丁涛, 周郑洋, 等. 面向碳中和的工业尾气电厂技术综述及其典型案例经济性分析[J]. 电力自动化设备, 2021, 41(9): 74-84. |
Mu C L, Ding T, Zhou Z Y, et al. Technology review on industrial off-gas power plants for carbon neutral and economic analysis of typical cases[J]. Electric Power Automation Equipment, 2021, 41(9): 74-84. | |
6 | 北京首钢朗泽科技股份有限公司. 工业尾气生物发酵制燃料乙醇项目介绍[C]//2019钢铁、焦化行业煤气安全管理与高效利用技术交流会会议文集. 唐山, 河北: 河北省金属学会, 2019: 125-131. |
Beijing Shougang Lanzatech New Energy Technology Co., Ltd. The introduction of fuel ethanol production from industrial exhaust gas by biological fermentation[C]//2019 Steel, Coking Industry Gas Safety Management and Efficient Utilization technology Exchange Conference Proceedings. Tangshan, Hebei: Hebei Metal Society, 2019: 125-131. | |
7 | Klasson K T, Elmore B B, Vega J L, et al. Biological production of liquid and gaseous fuels from synthesis gas[J]. Applied Biochemistry and Biotechnology, 1990, 24 (1): 857-873. |
8 | Allen T D, Caldwell M E, Lawson P A, et al. Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(10): 2483-2489. |
9 | Liu K, Atiyeh H K, Tanner R S, et al. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi [J]. Bioresource Technology, 2012, 104: 336-341. |
10 | Lynd L, Kerby R, Zeikus J G. Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum [J]. Journal of Bacteriology, 1982, 149(1): 255-263. |
11 | Zeikus J G, Lynd L H, Thompson T E, et al. Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain[J]. Current Microbiology, 1980, 3(6): 381-386. |
12 | Worden R M, Grethlein A J, Jain M K, et al. Production of butanol and ethanol from synthesis gas via fermentation[J]. Fuel, 1991, 70(5): 615-619. |
13 | Sim J H, Kamaruddin A H, Long W S, et al. Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology[J]. Enzyme and Microbial Technology, 2007, 40(5): 1234-1243. |
14 | Abrini J, Naveau H, Nyns E J. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide[J]. Archives of Microbiology, 1994, 161(4): 345-351. |
15 | Guo Y, Xu J L, Zhang Y, et al. Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source[J]. Bioresource Technology, 2010, 101(22): 8784-8789. |
16 | Cotter J L, Chinn M S, Grunden A M. Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas[J]. Enzyme and Microbial Technology, 2009, 44(5): 281-288. |
17 | Liou J S C, Balkwill D L, Drake G R, et al. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2085-2091. |
18 | He Y X, Lens P N L, Veiga M C, et al. Enhanced ethanol production from carbon monoxide by enriched clostridium bacteria[J]. Frontiers in Microbiology, 2021, 12: 754713. |
19 | Tanner R S, Miller L M, Yang D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I[J]. International Journal of Systematic Bacteriology, 1993, 43(2): 232-236. |
20 | Huhnke R L, Lewis R S, Tanner R S. Isolation and characterization of novel clostridial species: US7704723[P]. 2010-04-27. |
21 | Panneerselvam A, Wilkins M R, DeLorme M J M, et al. Effects of various reducing agents on syngas fermentation by “Clostridium ragsdalei”[J]. Biological Engineering Transactions, 2010, 2(3): 135-144. |
22 | Istiqomah N A, Kresnowati M P, Setiadi T. Syngas fermentation for production of ethanol[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1143(1): 012014. |
23 | Rajagopalan S, Datar R P, Lewis R S. Formation of ethanol from carbon monoxide via a new microbial catalyst[J]. Biomass and Bioenergy, 2002, 23(6): 487-493. |
24 | Sakai S, Nakashimada Y, Yoshimoto H, et al. Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1[J]. Biotechnology Letters, 2004, 26(20): 1607-1612. |
25 | Savage M D, Wu Z G, Daniel S L, et al. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum [J]. Applied and Environmental Microbiology, 1987, 53(8): 1902-1906. |
26 | 王陆洋. 生物质合成气发酵制取乙醇技术探索[D]. 杭州: 浙江大学, 2021. |
Wang L Y. Technology exploration of ethanol production from biomass syngas fermentation[D]. Hangzhou: Zhejiang University, 2021. | |
27 | Wilkins M R, Atiyeh H K. Microbial production of ethanol from carbon monoxide[J]. Current Opinion in Biotechnology, 2011, 22(3): 326-330. |
28 | Köpke M, Held C, Hujer S, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas[J]. PNAS, 2010, 107(29): 13087-13092. |
29 | Ragsdale S W, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics, 2008, 1784(12): 1873-1898. |
30 | Zhu X F, Tan X S. Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-Ljungdahl pathway[J]. Science in China Series B: Chemistry, 2009, 52(12): 2071-2082. |
31 | Latif H, Zeidan A A, Nielsen A T, et al. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms[J]. Current Opinion in Biotechnology, 2014, 27: 79-87. |
32 | Henstra A M, Sipma J, Rinzema A, et al. Microbiology of synthesis gas fermentation for biofuel production[J]. Current Opinion in Biotechnology, 2007, 18(3): 200-206. |
33 | Ragsdale S W. Enzymology of the acetyl-CoA pathway of CO2 fixation[J]. Critical Reviews in Biochemistry and Molecular Biology, 1991, 26(3/4): 261-300. |
34 | Stelmachowski M, Nowicki L. Fuel from the synthesis gas—the role of process engineering[J]. Applied Energy, 2003, 74(1/2): 85-93. |
35 | 陈俊武, 李春年, 陈香生. 石油替代综论[M]. 北京: 中国石化出版社, 2009. |
Chen J W, Li C N, Chen X S. An Overview of Petroleum Substitution[M]. Beijing: China Petrochemical Press, 2009. | |
36 | 张海峰, 张敏. 不同煤气化技术合成气发酵法制乙醇的可行性探讨[J]. 现代化工, 2020, 40(S1): 279-283. |
Zhang H F, Zhang M. Discussion on feasibility of fermentation to produce ethanol by syngas with different coal gasification technologies[J]. Modern Chemical Industry, 2020, 40(S1): 279-283. | |
37 | 李琼玖, 叶传湘. 天然气转化制合成气工艺优化[J]. 四川化工, 1996(S4): 56-59. |
Li Q J, Ye C X. Optimization of natural gas conversion to syngas process[J]. Sichuan Chemical Industry, 1996(S4): 56-59. | |
38 | 黎先发, 张颖, 罗学刚. 利用木质纤维素生产燃料酒精研究进展[J]. 现代化工, 2009, 29(1): 20-26. |
Li X F, Zhang Y, Luo X G. Advances in production of fuel alcohol by lignocellulosic biomass[J]. Modern Chemical Industry, 2009, 29(1): 20-26. | |
39 | 孟丽莉, 丛凤英. 利用电石尾气制取甲醇[J]. 山西化工, 2021, 41(4): 55-57. |
Meng L L, Cong F Y. Preparation of methanol from calcium carbide tail gas[J]. Shanxi Chemical Industry, 2021, 41(4): 55-57 | |
40 | 黄敏, 曾义红, 唐黎华, 等. 含CO副产气资源化利用进展[J]. 上海化工, 2011, 36(5): 30-32. |
Huang M, Zeng Y H, Tang L H, et al. Research progress in resource utilization of accessory gas with carbon monoxide[J]. Shanghai Chemical Industry, 2011, 36(5): 30-32. | |
41 | 周波, 邱海芳. 醋酸尾气回收制备高纯度一氧化碳技术研究[J]. 煤炭与化工, 2021, 44(11): 125-127, 133. |
Zhou B, Qiu H F. Research on the technology of preparation high-purity carbon monoxide by recovering acetic acid tail gas[J]. Coal and Chemical Industry, 2021, 44(11): 125-127, 133. | |
42 | 王一坤, 雷小苗, 邓磊, 等. 可燃废气利用技术研究进展(Ⅰ): 高炉煤气、转炉煤气和焦炉煤气[J]. 热力发电, 2014, 43(7): 1-9, 14. |
Wang Y K, Lei X M, Deng L, et al. A review on utilization of combustible waste gas (Ⅰ): Blast furnace gas, converter gas and coke oven gas[J]. Thermal Power Generation, 2014, 43(7): 1-9, 14. | |
43 | 苏岱峰. 微观组分变化对转炉煤气爆炸下限的影响研究[J]. 山西冶金, 2021, 44(5): 89-90, 93. |
Su D F. Study on the influence of micro component change on the lower explosion limit of converter gas[J]. Shanxi Metallurgy, 2021, 44(5): 89-90, 93. | |
44 | 陈玉保, 宁平, 孙海燕, 等. 合成氨液氮洗驰放气变压吸附提纯CO实验研究[C]//中国环境科学学会2009年学术年会论文集第二卷. 武汉, 湖北: 中国环境科学学会, 2009:1059-1065. |
Chen Y B, Ning P, Sun H Y, et al. Experimental study on purification of CO from synthetic ammonia with liquid nitrogen by washing and releasing gas pressure transformation adsorption[C]//Chinese Society for Environmental Science Annual Conference Proceedings Ⅱ. Wuhan, Hubei: Chinese Society of Environmental Sciences, 2009:1059-1065. | |
45 | Orgill J J. Enhancement of mass transfer and electron usage for syngas fermentation[D]. Provo: Brigham Young University, 2014. |
46 | Heiskanen H, Virkajärvi I, Viikari L. The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum [J]. Enzyme and Microbial Technology, 2007, 41(3): 362-367. |
47 | Skidmore B E, Baker R A, Banjade D R, et al. Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency[J]. Biomass and Bioenergy, 2013, 55: 156-162. |
48 | Hurst K M, Lewis R S. Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation[J]. Biochemical Engineering Journal, 2010, 48(2): 159-165. |
49 | Ramachandriya K D, DeLorme M J, Wilkins M R. Heat shocking of Clostridium strain P11 to promote sporulation and ethanol production[J]. Biological Engineering, 2010, 2(2): 115-131. |
50 | Chen J, Gomez J A, Höffner K, et al. Metabolic modeling of synthesis gas fermentation in bubble column reactors[J]. Biotechnology for Biofuels, 2015, 8: 89. |
51 | Esquivel-Elizondo S, Delgado A G, Rittmann B E, et al. The effects of CO2 and H2 on CO metabolism by pure and mixed microbial cultures[J]. Biotechnology for Biofuels, 2017, 10: 220. |
52 | Bridgwater A V. Catalysis in thermal biomass conversion[J]. Applied Catalysis A: General, 1994, 116(1/2): 5-47. |
53 | Haryanto A, Fernando S D, Pordesimo L O, et al. Upgrading of syngas derived from biomass gasification: a thermodynamic analysis[J]. Biomass and Bioenergy, 2009, 33(5): 882-889. |
54 | Ramachandriya K D. Effect of biomass generated producer gas, methane and physical parameters on producer gas fermentations by Clostridium strain P11[D]. Stillwater: Oklahoma State University, 2009. |
55 | Ahmed A, Cateni B G, Huhnke R L, et al. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T[J]. Biomass and Bioenergy, 2006, 30(7): 665-672. |
56 | Ahmed A, Lewis R S. Fermentation of biomass-generated synthesis gas: effects of nitric oxide[J]. Biotechnology and Bioengineering, 2007, 97(5): 1080-1086. |
57 | Klasson K T, Ackerson M D, Clausen E C, et al. Biological conversion of coal and coal-derived synthesis gas[J]. Fuel, 1993, 72(12): 1673-1678. |
58 | Maddipati P, Atiyeh H K, Bellmer D D, et al. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract[J]. Bioresource Technology, 2011, 102(11): 6494-6501. |
59 | Fernández-Naveira Á, Veiga M C, Kennes C. Effect of pH control on the anaerobic H-B-E fermentation of syngas in bioreactors[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1178-1185. |
60 | Richter H, Molitor B, Wei H, et al. Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression[J]. Energy & Environmental Science, 2016, 9(7): 2392-2399. |
61 | Abubackar H N, Veiga M C, Kennes C. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid[J]. Bioresource Technology, 2015, 186: 122-127. |
62 | Abubackar H N, Bengelsdorf F R, Dürre P, et al. Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia[J]. Applied Energy, 2016, 169: 210-217. |
63 | Fernández-Naveira Á, Abubackar H N, Veiga M C, et al. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans [J]. Applied Microbiology and Biotechnology, 2016, 100(7): 3361-3370. |
64 | Martin M E, Richter H, Saha S, et al. Traits of selected Clostridium strains for syngas fermentation to ethanol[J]. Biotechnology and Bioengineering, 2016, 113(3): 531-539. |
65 | Atiyeh H K, Phillips J R, Huhnke R L. System and method for feedback control of gas supply for ethanol production via syngas fermentation using pH as a key control indicator: US10017789[P]. 2018-07-10. |
66 | Kundiyana D K, Wilkins M R, Maddipati P, et al. Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei”[J]. Bioresource Technology, 2011, 102(10): 5794-5799. |
67 | Shen S H, Wang G, Zhang M, et al. Effect of temperature and surfactant on biomass growth and higher-alcohol production during syngas fermentation by Clostridium carboxidivorans P7[J]. Bioresources and Bioprocessing, 2020, 7: 56. |
68 | Ramió-Pujol S, Ganigué R, Bañeras L, et al. Incubation at 25 ℃ prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7[J]. Bioresource Technology, 2015, 192: 296-303. |
69 | Mohammadi M. Effect of organic substrate on promoting solventogenesis in ethanologenic acetogene Clostridium ljungdahlii ATCC 55383[J]. International Journal of Engineering, 2014, 27(2): 185-194. |
70 | Phillips J, Huhnke R, Atiyeh H. Syngas fermentation: a microbial conversion process of gaseous substrates to various products[J]. Fermentation, 2017, 3(2): 28. |
71 | Klasson K T, Ackerson C M D, Clausen E C, et al. Biological conversion of synthesis gas into fuels[J]. International Journal of Hydrogen Energy, 1992, 17(4): 281-288. |
72 | Andrews J F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates[J]. Biotechnology and Bioengineering, 1968, 10(6): 707-723. |
73 | Vega J L, Clausen E C, Gaddy J L. Design of bioreactors for coal synthesis gas fermentations[J]. Resources, Conservation and Recycling, 1990, 3(2/3): 149-160. |
74 | Klasson K T, Ackerson M D, Clausen E C, et al. Bioreactors for synthesis gas fermentations[J]. Resources, Conservation and Recycling, 1991, 5(2/3): 145-165. |
75 | Kennes D, Abubackar H N, Diaz M, et al. Bioethanol production from biomass: carbohydrate vs syngas fermentation[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(2): 304-317. |
76 | 吴冠勋, 吴玉珊, 韩一凡, 等. 产乙酸菌合成气发酵的研究进展[J]. 微生物前沿, 2017, 6(1): 9. |
Wu G X, Wu Y S, Han Y F, et al. Advances in syngas fermentation of acetic acid producing bacteria[J]. Frontiers of Microbiology, 2017, 6(1): 9. | |
77 | Saxena J, Tanner R S. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei [J]. Journal of Industrial Microbiology and Biotechnology, 2011, 38(4): 513-521. |
78 | Kundiyana D K, Huhnke R L, Maddipati P, et al. Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation[J]. Bioresource Technology, 2010, 101(24): 9673-9680. |
79 | Liu K, Atiyeh H K, Stevenson B S, et al. Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol[J]. Bioresource Technology, 2014, 151: 69-77. |
80 | Saxena J, Tanner R S. Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei [J]. World Journal of Microbiology & Biotechnology, 2012, 28(4): 1553-1561. |
81 | Richter H, Martin M, Angenent L. A two-stage continuous fermentation system for conversion of syngas into ethanol[J]. Energies, 2013, 6(8): 3987-4000. |
82 | Abubackar H N, Veiga M C, Kennes C. Production of acids and alcohols from syngas in a two-stage continuous fermentation process[J]. Bioresource Technology, 2018, 253: 227-234. |
83 | Bredwell M D, Worden R M. Mass-transfer properties of microbubbles(1): Experimental studies[J]. Biotechnology Progress, 1998, 14(1): 31-38. |
84 | Bredwell M D, Srivastava P, Worden R M. Reactor design issues for synthesis-gas fermentations[J]. Biotechnology Progress, 1999, 15(5): 834-844. |
85 | Liu K, Phillips J R, Sun X, et al. Investigation and modeling of gas-liquid mass transfer in a sparged and non-sparged continuous stirred tank reactor with potential application in syngas fermentation[J]. Fermentation, 2019, 5(3): 75. |
86 | Munasinghe P C, Khanal S K. Evaluation of hydrogen and carbon monoxide mass transfer and a correlation between the myoglobin-protein bioassay and gas chromatography method for carbon monoxide determination[J]. RSC Advances, 2014, 4(71): 37575-37581. |
87 | Devarapalli M, Lewis R, Atiyeh H. Continuous ethanol production from synthesis gas by Clostridium ragsdalei in a trickle-bed reactor[J]. Fermentation, 2017, 3(2): 23. |
88 | Shen Y W, Brown R, Wen Z Y. Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor[J]. Applied Energy, 2014, 136: 68-76. |
89 | Orgill J J, Atiyeh H K, Devarapalli M, et al. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors[J]. Bioresource Technology, 2013, 133: 340-346. |
90 | Shen Y W, Brown R C, Wen Z Y. Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production[J]. Applied Energy, 2017, 187: 585-594. |
91 | Bouaifi M, Hebrard G, Bastoul D, et al. A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(2): 97-111. |
92 | Abubackar H N, Veiga M C, Kennes C. Syngas fermentation for bioethanol and bioproducts[M]//Sustainable Resource Recovery and Zero Waste Approaches. Amsterdam: Elsevier B.V., 2019: 207-221. |
93 | Cowger J P, Klasson K T, Ackerson M D, et al. Mass-transfer and kinetic aspects in continuous bioreactors using Rhodospirillum rubrum [J]. Applied Biochemistry and Biotechnology, 1992, 34(1): 613-624. |
94 | Devarapalli M, Atiyeh H K, Phillips J R, et al. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei [J]. Bioresource Technology, 2016, 209: 56-65. |
95 | Riggs S S, Heindel T J. Measuring carbon monoxide gas-liquid mass transfer in a stirred tank reactor for syngas fermentation[J]. Biotechnology Progress, 2006, 22(3): 903-906. |
96 | Younesi H, Najafpour G, Ku Ismail K S, et al. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum [J]. Bioresource Technology, 2008, 99(7): 2612-2619. |
97 | Chang I S, Kim B H, Lovitt R W, et al. Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612[J]. Process Biochemistry, 2001, 37(4): 411-421. |
98 | Shen Y W, Brown R, Wen Z Y. Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance[J]. Biochemical Engineering Journal, 2014, 85: 21-29. |
99 | Munasinghe P C, Khanal S K. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor[J]. Bioresource Technology, 2012, 122: 130-136. |
100 | Lee P H, Ni S Q, Chang S Y, et al. Enhancement of carbon monoxide mass transfer using an innovative external hollow fiber membrane (HFM) diffuser for syngas fermentation: experimental studies and model development[J]. Chemical Engineering Journal, 2012, 184: 268-277. |
101 | Mohammadi M, Younesi H, Najafpour G, et al. Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(6): 837-843. |
102 | Kundiyana D K, Huhnke R L, Wilkins M R. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations[J]. Journal of Bioscience and Bioengineering, 2010, 109(5): 492-498. |
103 | Phillips J R, Klasson K T, Clausen E C, et al. Biological production of ethanol from coal synthesis gas[J]. Applied Biochemistry and Biotechnology, 1993, 39(1): 559-571. |
104 | Ruthiya K. Mass transfer and hydrodynamics in catalytic slurry reactors[D]. Eindhoven, The Netherlands: Eindhoven University of Technology, 2005. |
105 | Kim Y K, Lee H. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation[J]. Bioresource Technology, 2016, 204: 139-144. |
106 | Zhu H Y, Shanks B H, Heindel T J. Enhancing CO-water mass transfer by functionalized MCM41 nanoparticles[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7881-7887. |
107 | Zhu H Y, Shanks B H, Choi D W, et al. Effect of functionalized MCM41 nanoparticles on syngas fermentation[J]. Biomass and Bioenergy, 2010, 34(11): 1624-1627. |
108 | Atiyeh H K, Lewis R S, Phillips J R, et al. Method improving producer gas fermentation: US10053711[P]. 2018-08-21. |
109 | Zhu H Y, Shanks B H, Heindel T J. Effect of electrolytes on CO–water mass transfer[J]. Industrial & Engineering Chemistry Research, 2009, 48(6): 3206-3210. |
110 | Gunes B. A critical review on biofilm-based reactor systems for enhanced syngas fermentation processes[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110950. |
111 | Stoll I K, Boukis N, Sauer J. Syngas fermentation at elevated pressure-experimental results[C]//27th European Biomass Conference and Exhibition. Lisbon, Portugal: European Commission, Joint Research Centre, 2019: 1255-1261. |
112 | Takors R, Kopf M, Mampel J, et al. Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do's and don'ts of successful technology transfer from laboratory to production scale[J]. Microbial Biotechnology, 2018, 11(4): 606-625. |
113 | Köpke M, Mihalcea C, Bromley J C, et al. Fermentative production of ethanol from carbon monoxide[J]. Current Opinion in Biotechnology, 2011, 22(3): 320-325. |
114 | Daniell J, Köpke M, Simpson S. Commercial biomass syngas fermentation[J]. Energies, 2012, 5(12): 5372-5417. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[4] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[5] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[6] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[7] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[8] | 何金峰, 李秀珍, 寇建耀, 陶庭杰, 余灿, 刘欢, 陈永元, 赵豪健, 江大好, 李小年. 乙醇制高级醇有序介孔氧化铝负载铜基催化剂研究[J]. 化工学报, 2023, 74(3): 1082-1091. |
[9] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[10] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[11] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[12] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[13] | 项望凯, 刘园园, 郑映, 潘鹏举. 基于熔融/固相缩聚制备中高分子量聚乙醇酸[J]. 化工学报, 2023, 74(2): 933-940. |
[14] | 李鑫, 曾少娟, 彭奎霖, 袁磊, 张香平. CO2电催化还原制合成气研究进展及趋势[J]. 化工学报, 2023, 74(1): 313-329. |
[15] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||