化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1082-1091.DOI: 10.11949/0438-1157.20221517
何金峰1(), 李秀珍2, 寇建耀1, 陶庭杰1, 余灿1, 刘欢1, 陈永元1, 赵豪健1, 江大好1(), 李小年1
收稿日期:
2022-11-22
修回日期:
2023-02-15
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
江大好
作者简介:
何金峰(1997—),男,硕士研究生,944458893@qq.com
基金资助:
Jinfeng HE1(), Xiuzhen LI2, Jianyao KOU1, Tingjie TAO1, Can YU1, Huan LIU1, Yongyuan CHEN1, Haojian ZHAO1, Dahao JIANG1(), Xiaonian LI1
Received:
2022-11-22
Revised:
2023-02-15
Online:
2023-03-05
Published:
2023-04-19
Contact:
Dahao JIANG
摘要:
为了实现乙醇向高级醇的高效转化,以蒸发诱导自组装法合成的有序介孔氧化铝(ordered mesoporous alumina,OMA)为载体制备了系列Cu-La2O3/OMA催化剂,并深入研究了其在乙醇制高级醇反应中的构效关系。在533 K、3 MPa、LHSV=2 ml/(g cat·h)、V(N2)/V(EtOH)=250∶1的反应条件下,最佳的Cu-La2O3/OMA(973)催化剂表现出高达55.5%的乙醇转化率和40.1%的高级醇收率,并且在200 h的连续反应中展现出优异的稳定性。OMA载体表面高度分散的Cu和La2O3活性组分协同OMA载体提供了大量的金属和酸碱中心,同时其较大的介孔孔径有利于降低反应物及产物分子在催化剂孔道中的扩散阻力,从而使得Cu-La2O3/OMA催化剂表现出较高的活性及高级醇选择性。此外,OMA载体表面五配位Al3+通过Cu-O-Al键对Cu活性物种的锚定作用是催化剂具有良好稳定性的重要原因。
中图分类号:
何金峰, 李秀珍, 寇建耀, 陶庭杰, 余灿, 刘欢, 陈永元, 赵豪健, 江大好, 李小年. 乙醇制高级醇有序介孔氧化铝负载铜基催化剂研究[J]. 化工学报, 2023, 74(3): 1082-1091.
Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts[J]. CIESC Journal, 2023, 74(3): 1082-1091.
图1 不同温度焙烧的OMA载体的N2物理吸附脱附等温线及孔径分布
Fig.1 N2 physical adsorption-desorption isotherms curves and pore size distribution of OMA supports with different calcination temperatures
Calcination temperature/K | Specific surface area/(m2/g) | Pore volume/ (cm3/g) | Average pore size/nm |
---|---|---|---|
723 | 321.91 | 1.10 | 13.17 |
773 | 322.16 | 1.14 | 13.83 |
873 | 314.37 | 1.05 | 13.63 |
973 | 254.40 | 1.06 | 14.93 |
1073 | 269.11 | 0.85 | 11.82 |
1273 | 103.37 | 0.67 | 21.92 |
723① | 241.70 | 0.43 | 6.82 |
表1 不同温度焙烧的OMA载体的结构性质
Table 1 Structural properties of OMA supports calcined at different temperatures
Calcination temperature/K | Specific surface area/(m2/g) | Pore volume/ (cm3/g) | Average pore size/nm |
---|---|---|---|
723 | 321.91 | 1.10 | 13.17 |
773 | 322.16 | 1.14 | 13.83 |
873 | 314.37 | 1.05 | 13.63 |
973 | 254.40 | 1.06 | 14.93 |
1073 | 269.11 | 0.85 | 11.82 |
1273 | 103.37 | 0.67 | 21.92 |
723① | 241.70 | 0.43 | 6.82 |
Catalysts | Acidity distribution/ (mmol/g) | Total acidity/ (mmol/g) | Basicity distribution/ (mmol/g) | Total basicity/ (mmol/g) | ||
---|---|---|---|---|---|---|
Weak | Strong | Weak | Strong | |||
Cu-La2O3/OMA(773) | 0.569 | 0.841 | 1.410 | 0.032 | 0.174 | 0.206 |
Cu-La2O3/OMA(973) | 0.381 | 1.374 | 1.755 | 0.095 | 0.066 | 0.161 |
Cu-La2O3/OMA(1273) | 0.115 | 0.380 | 0.495 | 0.059 | 0.135 | 0.194 |
表2 Cu-La2O3/OMA(x)催化剂的酸碱性质
Table 2 Acid-base properties of Cu-La2O3/OMA(x) catalysts
Catalysts | Acidity distribution/ (mmol/g) | Total acidity/ (mmol/g) | Basicity distribution/ (mmol/g) | Total basicity/ (mmol/g) | ||
---|---|---|---|---|---|---|
Weak | Strong | Weak | Strong | |||
Cu-La2O3/OMA(773) | 0.569 | 0.841 | 1.410 | 0.032 | 0.174 | 0.206 |
Cu-La2O3/OMA(973) | 0.381 | 1.374 | 1.755 | 0.095 | 0.066 | 0.161 |
Cu-La2O3/OMA(1273) | 0.115 | 0.380 | 0.495 | 0.059 | 0.135 | 0.194 |
Catalysts | Conversion/% | Selectivity/% | ST③/% | YT④/% | |||||
---|---|---|---|---|---|---|---|---|---|
Acetaldehyde | Butyradehyde | Ethyl acetate | n-Butanol | C6—C8 alcohols① | Others② | ||||
Cu-La2O3/OMA(723) | 26.6 | 4.4 | 4.4 | 11.7 | 52.8 | 13.9 | 12.8 | 66.7 | 17.7 |
Cu-La2O3/OMA(773) | 30.8 | 2.3 | 4.4 | 10.4 | 54.8 | 15.5 | 12.6 | 70.3 | 21.7 |
Cu-La2O3/OMA(873) | 37.2 | 2.1 | 5.0 | 9.1 | 53.0 | 17.7 | 13.0 | 70.7 | 26.3 |
Cu-La2O3/OMA(973) | 55.5 | 2.7 | 5.3 | 6.5 | 46.4 | 25.9 | 13.2 | 72.3 | 40.1 |
Cu-La2O3/OMA(1073) | 53.8 | 1.9 | 4.9 | 11.2 | 44.9 | 18.3 | 18.8 | 63.2 | 34.0 |
Cu-La2O3/OMA(1273) | 38.7 | 3.7 | 11.4 | 24.5 | 34.8 | 4.3 | 21.4 | 39.1 | 15.1 |
Cu-La2O3/γ-Al2O3 | 42.2 | 2.9 | 8.0 | 19.4 | 44.3 | 5.8 | 19.6 | 50.1 | 21.1 |
表3 Cu-La2O3/OMA(x)催化剂在乙醇制高级醇反应中的催化性能
Table 3 Catalytic performance of Cu-La2O3/OMA(x) catalysts for ethanol upgrading to higher alcohols
Catalysts | Conversion/% | Selectivity/% | ST③/% | YT④/% | |||||
---|---|---|---|---|---|---|---|---|---|
Acetaldehyde | Butyradehyde | Ethyl acetate | n-Butanol | C6—C8 alcohols① | Others② | ||||
Cu-La2O3/OMA(723) | 26.6 | 4.4 | 4.4 | 11.7 | 52.8 | 13.9 | 12.8 | 66.7 | 17.7 |
Cu-La2O3/OMA(773) | 30.8 | 2.3 | 4.4 | 10.4 | 54.8 | 15.5 | 12.6 | 70.3 | 21.7 |
Cu-La2O3/OMA(873) | 37.2 | 2.1 | 5.0 | 9.1 | 53.0 | 17.7 | 13.0 | 70.7 | 26.3 |
Cu-La2O3/OMA(973) | 55.5 | 2.7 | 5.3 | 6.5 | 46.4 | 25.9 | 13.2 | 72.3 | 40.1 |
Cu-La2O3/OMA(1073) | 53.8 | 1.9 | 4.9 | 11.2 | 44.9 | 18.3 | 18.8 | 63.2 | 34.0 |
Cu-La2O3/OMA(1273) | 38.7 | 3.7 | 11.4 | 24.5 | 34.8 | 4.3 | 21.4 | 39.1 | 15.1 |
Cu-La2O3/γ-Al2O3 | 42.2 | 2.9 | 8.0 | 19.4 | 44.3 | 5.8 | 19.6 | 50.1 | 21.1 |
1 | Ribeiro B E. Beyond commonplace biofuels: social aspects of ethanol[J]. Energy Policy, 2013, 57: 355-362. |
2 | Britto Júnior R F, Martins C A. Emission analysis of a diesel engine operating in diesel-ethanol dual-fuel mode[J]. Fuel, 2015, 148: 191-201. |
3 | Nanthagopal K, Ashok B, Saravanan B, et al. An assessment on the effects of 1-pentanol and 1-butanol as additives with Calophyllum Inophyllum biodiesel[J]. Energy Conversion and Management, 2018, 158: 70-80. |
4 | Atmanli A, Yilmaz N. A comparative analysis of n-butanol/diesel and 1-pentanol/diesel blends in a compression ignition engine[J]. Fuel, 2018, 234: 161-169. |
5 | Kozlowski J T, Davis R J. Heterogeneous catalysts for the guerbet coupling of alcohols[J]. ACS Catalysis, 2013, 3(7): 1588-1600. |
6 | Jordison T L, Lira C T, Miller D J. Condensed-phase ethanol conversion to higher alcohols[J]. Industrial & Engineering Chemistry Research, 2015, 54(44): 10991-11000. |
7 | Wu X Y, Fang G Q, Tong Y Q, et al. Catalytic upgrading of ethanol to n-butanol: progress in catalyst development[J]. ChemSusChem, 2018, 11(1): 71-85. |
8 | Marcu I C, Tichit D, Fajula F, et al. Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts[J]. Catalysis Today, 2009, 147(3/4): 231-238. |
9 | Carvalho D L, de Avillez R R, Rodrigues M T, et al. Mg and Al mixed oxides and the synthesis of n-butanol from ethanol[J]. Applied Catalysis A: General, 2012, 415/416: 96-100. |
10 | Birky T W, Kozlowski J T, Davis R J. Isotopic transient analysis of the ethanol coupling reaction over magnesia[J]. Journal of Catalysis, 2013, 298: 130-137. |
11 | Yang C, Meng Z Y. Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites[J]. Journal of Catalysis, 1993, 142(1): 37-44. |
12 | Ogo S, Onda A, Yanagisawa K. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts[J]. Applied Catalysis A: General, 2011, 402(1/2): 188-195. |
13 | Earley J H, Bourne R A, Watson M J, et al. Continuous catalytic upgrading of ethanol to n-butanol and >C4 products over Cu/CeO2 catalysts in supercritical CO2 [J]. Green Chemistry, 2015, 17(5): 3018-3025. |
14 | Jiang D H, Wu X Y, Mao J, et al. Continuous catalytic upgrading of ethanol to n-butanol over Cu-CeO2/AC catalysts[J]. Chemical Communications, 2016, 52(95): 13749-13752. |
15 | Jiang D H, Fang G Q, Tong Y Q, et al. Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n-butanol[J]. ACS Catalysis, 2018, 8(12): 11973-11978. |
16 | Riittonen T, Toukoniitty E, Madnani D K, et al. One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide—the effect of the active metal on the selectivity[J]. Catalysts, 2012, 2(1): 68-84. |
17 | Davda R R, Shabaker J W, Huber G W, et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 171-186. |
18 | Pang J F, Zheng M Y, He L, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts[J]. Journal of Catalysis, 2016, 344: 184-193. |
19 | Wang Z N, Yin M, Pang J F, et al. Active and stable Cu doped NiMgAlO catalysts for upgrading ethanol to n-butanol[J]. Journal of Energy Chemistry, 2022, 72: 306-317. |
20 | Yun Y S, Park D S, Yi J. Effect of nickel on catalytic behaviour of bimetallic Cu-Ni catalyst supported on mesoporous alumina for the hydrogenolysis of glycerol to 1,2-propanediol[J]. Catalysis Science & Technology, 2014, 4(9): 3191-3202. |
21 | Liu Q, Gao J, Gu F, et al. One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation[J]. Journal of Catalysis, 2015, 326: 127-138. |
22 | Yuan Q, Yin A X, Luo C, et al. Facile synthesis for ordered mesoporous gamma-aluminas with high thermal stability[J]. Journal of the American Chemical Society, 2008, 130(11): 3465-3472. |
23 | Morris S M, Fulvio P F, Jaroniec M. Ordered mesoporous alumina-supported metal oxides[J]. Journal of the American Chemical Society, 2008, 130(45): 15210-15216. |
24 | Chein R, Yang Z W. Experimental study on dry reforming of biogas for syngas production over Ni-based catalysts[J]. ACS Omega, 2019, 4(25): 20911-20922. |
25 | Yan B, Gao Y, Wang B L, et al. Enhanced carbon dioxide oxidative dehydrogenation of 1-butene by iron-doped ordered mesoporous alumina[J]. ChemCatChem, 2017, 9(24): 4480-4483. |
26 | Aslam S, Subhan F, Yan Z F, et al. Dispersion of nickel nanoparticles in the cages of metal-organic framework: an efficient sorbent for adsorptive removal of thiophene[J]. Chemical Engineering Journal, 2017, 315: 469-480. |
27 | Zang Y H, Dong X F, Wang C X. One-pot synthesis of mesoporous Cu-SiO2-Al2O3 bifunctional catalysts for hydrogen production by dimethyl ether steam reforming[J]. Chemical Engineering Journal, 2017, 313: 1583-1592. |
28 | Gallo J M R, Bisio C, Gatti G, et al. Physicochemical characterization and surface acid properties of mesoporous [Al]-SBA-15 obtained by direct synthesis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(8): 5791-5800. |
29 | Pérez L L, Perdriau S, ten Brink G, et al. Stabilization of self-assembled alumina mesophases[J]. Chemistry of Materials, 2013, 25(6): 848-855. |
30 | He Y X, Zhang L M, An X, et al. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: adsorption isotherms, kinetics, thermodynamics and mechanism[J]. Science of the Total Environment, 2019, 688: 184-198. |
31 | Morterra C, Magnacca G. A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species[J]. Catalysis Today, 1996, 27(3/4): 497-532. |
32 | Alphonse P, Faure B. Thermal stabilization of alumina modified by lanthanum[J]. Microporous and Mesoporous Materials, 2014, 196: 191-198. |
33 | Kumar P, With P, Srivastava V C, et al. Dimethyl carbonate synthesis from carbon dioxide using ceria-zirconia catalysts prepared using a templating method: characterization, parametric optimization and chemical equilibrium modeling[J]. RSC Advances, 2016, 6(111): 110235-110246. |
34 | Di Cosimo J I, Diez V K, Xu M, et al. Structure and surface and catalytic properties of Mg-Al basic oxides[J]. Journal of Catalysis, 1998, 178(2): 499-510. |
[1] | 项望凯, 刘园园, 郑映, 潘鹏举. 基于熔融/固相缩聚制备中高分子量聚乙醇酸[J]. 化工学报, 2023, 74(2): 933-940. |
[2] | 王悦琳, 晁伟, 蓝晓程, 莫志朋, 佟淑环, 王铁峰. 合成气生物发酵法制乙醇的研究进展[J]. 化工学报, 2022, 73(8): 3448-3460. |
[3] | 苏畅, 冯晓博, 张立云, 陈峰, 赵小燕, 曹景沛. 四乙基氢氧化铵改性对HMOR分子筛结构及二甲醚羰基化性能的影响[J]. 化工学报, 2022, 73(2): 712-721. |
[4] | 董桂霖, 罗祖伟, 曹约强, 周静红, 李伟, 周兴贵. 液相还原温度对草酸酯加氢制乙醇酸甲酯银硅催化剂性能的影响[J]. 化工学报, 2022, 73(1): 232-240. |
[5] | 何婷, 林文胜. 基于余热利用的活化MDEA法脱除CO2的天然气液化系统[J]. 化工学报, 2021, 72(S1): 453-460. |
[6] | 陈晨, 王明明, 王志刚, 谭小耀. 镍基非对称中空纤维膜用于乙醇自热重整制氢[J]. 化工学报, 2021, 72(S1): 482-493. |
[7] | 冯晓博, 刘天龙, 赵小燕, 曹景沛. 合成气与二甲醚为原料直接制乙醇催化反应研究进展[J]. 化工学报, 2021, 72(8): 3958-3967. |
[8] | 丁婉月, 马晓华. 合成次数及硅铝比调控SAPO-34分子筛膜的乙醇脱水性能[J]. 化工学报, 2021, 72(8): 4410-4417. |
[9] | 黄艳, 陈功, 王睿猛, 邵珊, 张正生, 杨东晓, 卢真保, 黄佳, 赵祯霞, 赵钟兴. MIL-100(Fe)中乙醇对低挥发性香兰素的协同脱附研究[J]. 化工学报, 2021, 72(5): 2697-2705. |
[10] | 石敦峰, 甘云华, 罗燕来, 江政纬, 周毅. 乙醇浓度和应变率对扩散火焰特性的数值分析[J]. 化工学报, 2021, 72(5): 2801-2809. |
[11] | 彭启, 贾力, 丁艺, 张永欣, 党超, 银了飞. 受限微结构对低表面张力液滴合并弹跳的影响[J]. 化工学报, 2021, 72(4): 1920-1929. |
[12] | 王艳芳,毛恒,蔡玮玮,张傲率,徐李昊,赵之平. ZIF-L/PDMS混合基质膜蒸气渗透耦合发酵强化乙醇生产效率的研究[J]. 化工学报, 2021, 72(10): 5226-5236. |
[13] | 谈金辉, 徐菊美, 施云海. 常压下乙醇-水-醋酸钾系统汽液平衡数据的测定与关联[J]. 化工学报, 2020, 71(8): 3444-3451. |
[14] | 刘丹, 安然, 安维中, 林子昕, 别海燕. 考虑不同产品选择性目标的乙醇胺反应精馏塔模拟与优化[J]. 化工学报, 2020, 71(3): 1202-1209. |
[15] | 陈功,武煜翔,卢真保,王炳锋,杨东晓,赵钟兴,黄艳. 苯乙醇和茴香醚在含Fe蚕沙基生物碳材料的储香与释放性能研究[J]. 化工学报, 2020, 71(12): 5628-5635. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 384
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||