化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4103-4112.DOI: 10.11949/0438-1157.20220431
收稿日期:
2022-03-25
修回日期:
2022-06-12
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
刘向军
作者简介:
马语峻(1998—),女,硕士研究生,s20200151@xs.ustb.edu.cn
基金资助:
Received:
2022-03-25
Revised:
2022-06-12
Online:
2022-09-05
Published:
2022-10-09
Contact:
Xiangjun LIU
摘要:
化石燃料燃烧烟气中含有大量水分和潜热,高湿度烟气的直接排放造成极大的资源浪费和环境问题。多孔陶瓷膜是目前烟气水热回收最有前景的技术之一,其水分回收热力学和动力学的定量描述是该技术发展和装置设计的关键所在。分析了水分在多孔陶瓷膜表面及内部传质机理,基于Kelvin理论建立了水分在陶瓷膜内毛细凝聚热力学模型,并选取典型烟气温/湿度条件,得出不同工况下陶瓷膜发生毛细凝聚的临界孔径、凝聚水量及工作孔体积占比;进而基于毛细凝聚的表面传质和孔道输运Hagen-Poiseuille方程建立了陶瓷膜水分传质动力学模型,对典型温/湿度工况下回收水通量进行了计算,结果表明,多孔陶瓷膜的毛细凝聚效应对烟气水分回收的优越性十分明显,其表面回水通量远远大于冷凝法的水通量,孔径越小,表面水通量越高,但及时将孔道内的液态水输运到陶瓷膜另一侧需要的压差也越大,本文计算条件下,膜孔径为20.0 nm的陶瓷膜较为适宜。
中图分类号:
马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究[J]. 化工学报, 2022, 73(9): 4103-4112.
Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane[J]. CIESC Journal, 2022, 73(9): 4103-4112.
工况 | 温度/℃ | 相对湿度/% | 水蒸气体积分数/% |
---|---|---|---|
1 | 80 | 94.0 | 15.29 |
2 | 70 | 93.0 | 11.73 |
3 | 60 | 88.0 | 9.66 |
4 | 50 | 87.0 | 7.90 |
5 | 40 | 85.0 | 7.72 |
6 | 30 | 83.0 | 5.28 |
7 | 20 | 67.0 | 3.63 |
8 | 20 | 60.0 | 3.25 |
表1 8个典型烟气温/湿度工况
Table 1 Flue gas conditions of 8 cases
工况 | 温度/℃ | 相对湿度/% | 水蒸气体积分数/% |
---|---|---|---|
1 | 80 | 94.0 | 15.29 |
2 | 70 | 93.0 | 11.73 |
3 | 60 | 88.0 | 9.66 |
4 | 50 | 87.0 | 7.90 |
5 | 40 | 85.0 | 7.72 |
6 | 30 | 83.0 | 5.28 |
7 | 20 | 67.0 | 3.63 |
8 | 20 | 60.0 | 3.25 |
参数 | 数值 |
---|---|
膜平均孔隙率 | 0.5 |
膜孔道的曲折度 | 1 |
膜选择层厚度 | 10 μm |
烟气来流速度 | 0.5 m·s-1 |
陶瓷膜管外直径 | 8 mm |
膜内通入冷却水温度 | 16℃ |
烟气比定压热容 | 1.005 J·g-1·K-1 |
烟气热导率 | 0.026 W·m-1·K-1 |
烟气动力黏度 | 2.2×10-6 Pa·s |
水的动力黏度 | 1.1×10-3 Pa·s |
烟气密度 | 1190 g·m-3 |
冷却水密度 | 106 g·m-3 |
表2 陶瓷膜烟气水分回收相关参数
Table 2 Parameters of water recovery from flue gas by ceramic membrane
参数 | 数值 |
---|---|
膜平均孔隙率 | 0.5 |
膜孔道的曲折度 | 1 |
膜选择层厚度 | 10 μm |
烟气来流速度 | 0.5 m·s-1 |
陶瓷膜管外直径 | 8 mm |
膜内通入冷却水温度 | 16℃ |
烟气比定压热容 | 1.005 J·g-1·K-1 |
烟气热导率 | 0.026 W·m-1·K-1 |
烟气动力黏度 | 2.2×10-6 Pa·s |
水的动力黏度 | 1.1×10-3 Pa·s |
烟气密度 | 1190 g·m-3 |
冷却水密度 | 106 g·m-3 |
1 | Jia C H, Yan P, Liu P, et al. Energy industrial water withdrawal under different energy development scenarios: a multi-regional approach and a case study of China[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110224. |
2 | Abdelaziz E A, Saidur R, Mekhilef S. A review on energy saving strategies in industrial sector[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 150-168. |
3 | Xiong Y Y, Tan H Z, Wang Y B, et al. Pilot-scale study on water and latent heat recovery from flue gas using fluorine plastic heat exchangers[J]. Journal of Cleaner Production, 2017, 161: 1416-1422. |
4 | Bai H Y, Zhu J, Chu J Z, et al. Influences of the mixed LiCl-CaCl2 liquid desiccant solution on a membrane-based dehumidification system: parametric analysis and mixing ratio selection[J]. Energy and Buildings, 2019, 183: 592-606. |
5 | Kim J F, Park A, Kim S J, et al. Harnessing clean water from power plant emissions using membrane condenser technology[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6425-6433. |
6 | Drioli E, Santoro S, Simone S, et al. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser[J]. Reactive and Functional Polymers, 2014, 79: 1-7. |
7 | Brunetti A, Macedonio F, Barbieri G, et al. Membrane condenser as emerging technology for water recovery and gas pre-treatment: current status and perspectives[J]. BMC Chemical Engineering, 2019, 1: 19. |
8 | Macedonio F, Brunetti A, Barbieri G, et al. Membrane condenser configurations for water recovery from waste gases[J]. Separation and Purification Technology, 2017, 181: 60-68. |
9 | Xiao L H, Yang M L, Yuan W Z, et al. Macroporous ceramic membrane condenser for water and heat recovery from flue gas[J]. Applied Thermal Engineering, 2021, 186: 116512. |
10 | 曹钦丰, 孟庆莹, 季超, 等. 多孔陶瓷外膜孔径对烟气水热回收性能的影响[J]. 膜科学与技术, 2021, 41(4): 102-109. |
Cao Q F, Meng Q Y, Ji C, et al. Effect of pore size of outer-coated ceramic membranes on water and heat recovery performance in flue gas[J]. Membrane Science and Technology, 2021, 41(4): 102-109. | |
11 | Hu H W, Tang G H, Niu D. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery[J]. Scientific Reports, 2016, 6: 27274. |
12 | Chen H P, Zhou Y N, Su X, et al. Experimental study of water recovery from flue gas using hollow micro-nano porous ceramic composite membranes[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 349-355. |
13 | Tu T, Cui Q F, Liang F H, et al. Water recovery from stripping gas overhead CO2 desorber through air cooling enhanced by transport membrane condensation[J]. Separation and Purification Technology, 2019, 215: 625-633. |
14 | Wang D X, Bao A N, Kunc W, et al. Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91(1): 341-348. |
15 | Li Z H, Zhang H, Chen H P, et al. Experimental research on the heat transfer and water recovery performance of transport membrane condenser[J]. Applied Thermal Engineering, 2019, 160: 114060. |
16 | Yang B R, Chen H P. Heat and water recovery from flue gas: application of micro-porous ceramic membrane tube bundles in gas-fired power plant[J]. Chemical Engineering and Processing - Process Intensification, 2019, 137: 116-127. |
17 | Wang T T, Yue M W, Qi H, et al. Transport membrane condenser for water and heat recovery from gaseous streams: performance evaluation[J]. Journal of Membrane Science, 2015, 484: 10-17. |
18 | Bao A N, Wang D X, Lin C X. Nanoporous membrane tube condensing heat transfer enhancement study[J]. International Journal of Heat and Mass Transfer, 2015, 84: 456-462. |
19 | Lin C X, Wang D X, Bao A N. Numerical modeling and simulation of condensation heat transfer of a flue gas in a bundle of transport membrane tubes[J]. International Journal of Heat and Mass Transfer, 2013, 60: 41-50. |
20 | Soleimanikutanaei S, Lin C X, Wang D X. Numerical modeling and analysis of transport membrane condensers for waste heat and water recovery from flue gas[J]. International Journal of Thermal Sciences, 2019, 136: 96-106. |
21 | Jia C H, Liu P, Li Z. Performance analysis of ceramic membrane tube modules for water and heat recovery in coal-fired power plants[J]. Journal of Cleaner Production, 2021, 306: 127237. |
22 | Thomson W. On the equilibrium of vapour at a curved surface of liquid[J]. The Philosophical Magazine, 1871, 42(282): 448-452. |
23 | Uchytil P, Petrickovic R, Seidel-Morgenstern A. Study of capillary condensation of butane in a Vycor glass membrane[J]. Journal of Membrane Science, 2005, 264(1/2): 27-36. |
24 | Chen H P, Yang B R. Experiment and simulation method to investigate the flow within porous ceramic membrane[J]. Journal of the Australian Ceramic Society, 2018, 54(3): 575-586. |
25 | Li Z Y, Pan W. Preparation and characterization of nanoporous alumina as ceramic membrane materials[J]. IOP Conference Series: Materials Science and Engineering, 2019, 678(1): 012031. |
26 | Wagner W, Pruß A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[J]. Journal of Physical and Chemical Reference Data, 2002, 31(2): 387-535. |
27 | Liu X J, Shi Y F, Kalbassi M A, et al. A comprehensive description of water vapor equilibriums on alumina F-200: adsorption, desorption, and H2O/CO2 binary adsorption[J]. Separation and Purification Technology, 2014, 133: 276-281. |
28 | 杨世铭, 陶文铨. 传热学[M]. 3版. 北京: 高等教育出版社, 1998. |
Yang S M, Tao W Q. Heat Transfer[M]. 3rd ed. Beijing: Higher Education Press, 1998. | |
29 | 杨强生. 对流传热与传质[M]. 北京: 高等教育出版社, 1985. |
Yang Q S. Convection Heat Transfer and Mass Transfer[M]. Beijing: Higher Education Press, 1985. | |
30 | Zhou Y N, Chen H P, Xie T, et al. Effect of mass transfer on heat transfer of microporous ceramic membranes for water recovery[J]. International Journal of Heat and Mass Transfer, 2017, 112: 643-648. |
31 | Yue M W, Zhao S F, Feron P H M, et al. Multichannel tubular ceramic membrane for water and heat recovery from waste gas streams[J]. Industrial & Engineering Chemistry Research, 2016, 55(9): 2615-2622. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[7] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[8] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[9] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[10] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[11] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[12] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[13] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[14] | 王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
[15] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||