化工学报 ›› 2022, Vol. 73 ›› Issue (11): 4948-4956.DOI: 10.11949/0438-1157.20220939
收稿日期:
2022-07-05
修回日期:
2022-09-06
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
陈宏霞
作者简介:
王逸然(1997—),男,硕士研究生,wangyreasy@163.com
基金资助:
Yiran WANG(), Chaoyang GUAN, Xiang GAO, Hongxia CHEN()
Received:
2022-07-05
Revised:
2022-09-06
Online:
2022-11-05
Published:
2022-12-06
Contact:
Hongxia CHEN
摘要:
利用不同的改性方法对多孔泡沫铜表面进行浸润性改性处理,并制备了一系列具有不同疏水性的吸气板,系统研究了悬挂吸气板对沸腾单气泡生长、脱离阶段的影响。结果表明,不同吸气高度和吸气浸润性均对沸腾气泡动力学特性具有重要影响。当吸气高度小于气泡最大生长高度时,吸气板可实现强制气泡脱离并有效减小气泡最大脱离直径。当吸气板表面浸润角为150°时,吸气效果最佳,最短可将脱离阶段缩短至3 ms,最大瞬时吸气速率可达5.46 mm3/ms,为浸润角是100°吸气板吸气速率的3.96倍。耦合控制吸气板的吸气高度、浸润性和换热表面的微结构可共同实现对气泡生长阶段的提前干预和对脱离阶段的强制促进,真正实现沸腾动力学的全程强化。
中图分类号:
王逸然, 关朝阳, 高翔, 陈宏霞. 多孔泡沫吸气板调控沸腾气泡动力学实验研究[J]. 化工学报, 2022, 73(11): 4948-4956.
Yiran WANG, Chaoyang GUAN, Xiang GAO, Hongxia CHEN. Experimental study on boiling dynamics modulation by porous foam deaeration board[J]. CIESC Journal, 2022, 73(11): 4948-4956.
q/(kW/m2) | ||||||
---|---|---|---|---|---|---|
h=2.27 mm | h=1.74 mm | h=2.27 mm | h=1.74 mm | h=2.27 mm | h=1.74 mm | |
87.1 | 1.53 | 1.87 | 1.81 | 1.92 | 1.58 | 1.88 |
95.8 | 1.52 | 1.85 | 1.83 | 1.91 | 1.58 | 1.86 |
107.2 | 1.49 | 1.83 | 1.88 | 1.92 | 1.58 | 1.83 |
表1 不同热通量下的强化因子
Table 1 Strengthening factors at different heat fluxes
q/(kW/m2) | ||||||
---|---|---|---|---|---|---|
h=2.27 mm | h=1.74 mm | h=2.27 mm | h=1.74 mm | h=2.27 mm | h=1.74 mm | |
87.1 | 1.53 | 1.87 | 1.81 | 1.92 | 1.58 | 1.88 |
95.8 | 1.52 | 1.85 | 1.83 | 1.91 | 1.58 | 1.86 |
107.2 | 1.49 | 1.83 | 1.88 | 1.92 | 1.58 | 1.83 |
1 | Chen H X, Guo Y X, Yuan D Z, et al. Experimental study on frozen startup and heat transfer characteristics of a cesium heat pipe under horizontal state[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122105. |
2 | Zhang Y, Han H X, Wang N, et al. Improved heat spreading performance of functionalized graphene in microelectronic device application[J]. Advanced Functional Materials, 2015, 25(28): 4430-4435. |
3 | Tariq H A, Shoukat A A, Hassan M, et al. Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(5): 2171-2182. |
4 | Santini L, Cioncolini A, Butel M T, et al. Flow boiling heat transfer in a helically coiled steam generator for nuclear power applications[J]. International Journal of Heat and Mass Transfer, 2016, 92: 91-99. |
5 | 孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135. |
Sun X K, Li Q. Research on enhanced boiling heat transfer of multilevel composite wick structure[J]. CIESC Journal, 2022, 73(3): 1127-1135. | |
6 | 杨振, 姚元鹏, 李昀, 等. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101. |
Yang Z, Yao Y P, Li Y, et al. Experimental study on effect of surfactants on subcooled pool boiling characteristics of pure water working medium[J]. CIESC Journal, 2022, 73(3): 1093-1101. | |
7 | Zhang L, Wang T, Kim S, et al. The effects of wall superheat and surface wettability on nucleation site interactions during boiling[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118820. |
8 | Li X B, Wang S B, Wen R F, et al. Liquid film boiling enabled ultra-high conductance and high flux heat spreaders[J]. Cell Reports Physical Science, 2022, 3(3): 100746. |
9 | Jakob M. Heat transfer in evaporation and condensation-Ⅰ[J]. Am. Soc. Mech. Eng., 1936, 58: 643-660. |
10 | 姜洪鹏, 白敏丽, 高栋栋, 等. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103. |
Jiang H P, Bai M L, Gao D D, et al. Experimental study on flow boiling heat transfer on superhydrophobic/hydrophilic structure surface[J]. CIESC Journal, 2021, 72(8): 4093-4103. | |
11 | Feng Y, Chang F C, Hu Z T, et al. Investigation of pool boiling heat transfer on hydrophilic-hydrophobic mixed surface with micro-pillars using LBM[J]. International Journal of Thermal Sciences, 2021, 163: 106814. |
12 | Banik M, Sett S, Bakli C, et al. Substrate wettability guided oriented self assembly of Janus particles[J]. Scientific Reports, 2021, 11: 1182. |
13 | Allred T P, Weibel J A, Garimella S V. The role of dynamic wetting behavior during bubble growth and departure from a solid surface[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121167. |
14 | Liu Y, Tang J Q, Li L X, et al. Design of Cassie-wetting nucleation sites in pool boiling[J]. International Journal of Heat and Mass Transfer, 2019, 132: 25-33. |
15 | Sadaghiani A K, Altay R, Noh H, et al. Effects of bubble coalescence on pool boiling heat transfer and critical heat flux—a parametric study based on artificial cavity geometry and surface wettability[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118952. |
16 | Hsu C C, Lee M R, Wu C H, et al. Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling[J]. Applied Thermal Engineering, 2017, 112: 1187-1194. |
17 | Zhao Z C, Ma X L, Li S L, et al. Visualization-based nucleate pool boiling heat transfer enhancement on different sizes of square micropillar array surfaces[J]. Experimental Thermal and Fluid Science, 2020, 119: 110212. |
18 | Xue Y F, Zhao J F, Wei J J, et al. Experimental study of nucleate pool boiling of FC-72 on micro-pin-finned surface under microgravity[J]. International Journal of Heat and Mass Transfer, 2013, 63: 425-433. |
19 | Ma X H, Yu C J, Lan Z, et al. Experimental study of nucleate boiling heat transfer ssing enhanced space-confined structures[J]. Journal of Heat Transfer, 2012, 134(6): 061501. |
20 | Duan L, Liu B, Qi B J, et al. Pool boiling heat transfer on silicon chips with non-uniform micro-pillars[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119456. |
21 | Kiyomura I S, Nunes J M, Souza R R, et al. Effect of microfin surfaces on boiling heat transfer using HFE-7100 as working fluid[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(7): 1-13. |
22 | Liu B, Yu L M, Zhang Y H, et al. Enhanced nucleate pool boiling by coupling the pinning act and cluster bubble nucleation of micro-nano composited surfaces[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119979. |
23 | Azarkish H. Pool boiling enhancement on biphilic micropillar arrays: control on the thin film evaporation and rewetting flow[J]. Numerical Heat Transfer, Part A: Applications, 2020, 78(2): 60-72. |
24 | Zhao Z C, Zhang J J, Jia D D, et al. Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties[J]. Applied Thermal Engineering, 2017, 117: 417-426. |
25 | Dong L N, Quan X J, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer, 2014, 71: 189-196. |
26 | Wu Z, Cao Z, Sundén B. Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition[J]. Applied Energy, 2019, 249: 286-299. |
27 | Quan X J, Wang D M, Cheng P. An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid[J]. International Journal of Heat and Mass Transfer, 2017, 108: 32-40. |
28 | Cao Z, Liu B, Preger C, et al. Pool boiling heat transfer of FC-72 on pin-fin silicon surfaces with nanoparticle deposition[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1019-1033. |
29 | Karri S B R. Dynamics of bubble departure in micro-gravity[J]. Chemical Engineering Communications, 1988, 70(1): 127-135. |
30 | Chen H X, Sun Y, Li L H, et al. Bubble dynamics and heat transfer performance on micro-pillars structured surfaces with various pillars heights[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120502. |
31 | Chen H X, Li L H, Wang Y R, et al. Heat transfer enhancement in nucleate boiling on micropillar-arrayed surfaces with time-varying wettability[J]. Applied Thermal Engineering, 2022, 200: 117649. |
32 | 陈宏霞, 李林涵, 王逸然, 等. 时空调控微柱表面浸润性强化单气泡沸腾换热[J]. 化工学报, 2021, 72(6): 3278-3287. |
Chen H X, Li L H, Wang Y R, et al. Enhancement of single bubble boiling heat transfer on micropillar surface by wettability modulation with time and space[J]. CIESC Journal, 2021, 72(6): 3278-3287. | |
33 | 陈宏霞, 李林涵, 高翔, 等. 基于气泡动力学分段调控浸润性强化核态沸腾[J]. 化工学报, 2022, 73(4): 1557-1565. |
Chen H X, Li L H, Gao X, et al. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process[J]. CIESC Journal, 2022, 73(4): 1557-1565. |
[1] | 陈宏霞, 李林涵, 高翔, 王逸然, 郭宇翔. 基于气泡动力学分段调控浸润性强化核态沸腾[J]. 化工学报, 2022, 73(4): 1557-1565. |
[2] | 王宜飞, 王清强, 姬德生, 李申芳, 金楠, 赵玉潮. 微通道壁面浸润性对气-液两相流的影响规律研究[J]. 化工学报, 2022, 73(4): 1501-1514. |
[3] | 高翔, 王逸然, 关朝阳, 戈志华, 陈宏霞. 微结构导流作用强化单气泡沸腾的速度/压力场分析[J]. 化工学报, 2022, 73(12): 5376-5383. |
[4] | 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370. |
[5] | 陈宏霞, 李林涵, 王逸然, 郭宇翔, 刘霖. 时空调控微柱表面浸润性强化单气泡沸腾换热[J]. 化工学报, 2021, 72(6): 3278-3287. |
[6] | 陈宏霞, 孙源, 宫逸飞, 黄林滨. 单晶硅表面池沸腾可视化测量及数据分析[J]. 化工学报, 2019, 70(4): 1309-1317. |
[7] | 王鑫, 李晓磊, 李美慧, 桑勋源, 汪太阳. 基于聚类方法的运动气泡声发射信号分析[J]. 化工学报, 2018, 69(7): 2964-2971. |
[8] | 陈汉梽, 姚远, 公茂琼, 陈高飞, 邹鑫, 董学强, 沈俊. 乙烷池内核态沸腾气泡脱离直径[J]. 化工学报, 2018, 69(4): 1419-1427. |
[9] | 曹墨源, 巴特尔, 柏浩. 仿生特殊浸润性界面在化学工程与工艺中的应用[J]. 化工学报, 2018, 69(11): 4592-4604. |
[10] | 孙芹, 屈健, 袁建平. 等截面和变截面通道硅基微型脉动热管传热特性比较[J]. 化工学报, 2017, 68(5): 1803-1810. |
[11] | 陈宏霞, 马福民, 黄林滨. 金属丝网超亲/疏水性强化气液相界面运动[J]. 化工学报, 2016, 67(6): 2318-2324. |
[12] | 梁超, 王宏, 朱恂, 陈蓉, 丁玉栋, 廖强. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8): 2745-2751. |
[13] | 徐惠斌, 宋新南, 葛凤华, 胡自成, 顾锋. 常见液体除湿剂池内核态沸腾换热特性[J]. 化工学报, 2013, 64(4): 1211-1216. |
[14] | 张擎, 董克增, 黄正梁, 王靖岱, 阳永荣. 池内水沸腾状态的声发射测量[J]. 化工学报, 2013, 64(10): 3527-3533. |
[15] | 郭兆阳, 徐鹏, 王元华, 徐宏, 曾宪泰, 杨胜. 烧结型多孔表面管外池沸腾传热特性[J]. 化工学报, 2012, 63(12): 3798-3804. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||