化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3278-3287.DOI: 10.11949/0438-1157.20201427
收稿日期:
2020-10-12
修回日期:
2020-12-29
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
陈宏霞
作者简介:
陈宏霞(1980—),女,博士,副教授,基金资助:
CHEN Hongxia(),LI Linhan,WANG Yiran,GUO Yuxiang,LIU Lin
Received:
2020-10-12
Revised:
2020-12-29
Online:
2021-06-05
Published:
2021-06-05
Contact:
CHEN Hongxia
摘要:
微结构耦合浸润性调控是目前强化核态沸腾换热的主要手段,针对水工质在单晶硅微柱表面的核态沸腾过程,采用CFD-VOF三维数值模拟方法,对比研究时间及空间分别调控表面浸润性对沸腾气泡动力学、相界面形变及传热性能的影响。结果表明:亲水性增强使得气泡界面曲率增大、合力增强,促使气泡的脱离;空间调控主要表现为增大气泡体积,时间调控则主要表现为优化气泡动力学过程,提高热流较大的生长阶段在整个气泡周期内的占比,从而强化换热;本实验工况下,空间梯度浸润表面以及在生长阶段提高壁面亲水性,均可大幅度提高单气泡沸腾换热性能,平均热流最大可提高42.7%;考虑微尺度下梯度浸润性加工难度,时间调控浸润性强化沸腾换热具有更好的发展前景。
中图分类号:
陈宏霞, 李林涵, 王逸然, 郭宇翔, 刘霖. 时空调控微柱表面浸润性强化单气泡沸腾换热[J]. 化工学报, 2021, 72(6): 3278-3287.
CHEN Hongxia, LI Linhan, WANG Yiran, GUO Yuxiang, LIU Lin. Enhancement of single bubble boiling heat transfer on micropillar surface by wettability modulation with time and space[J]. CIESC Journal, 2021, 72(6): 3278-3287.
材料 | 密度/(kg/m3) | 比热容/(J/(kg·K)) | 热导率/(W/(m·K)) | 黏度/(kg/(m·s)) | 气液界面表面张力系数/(N/m) |
---|---|---|---|---|---|
单晶硅 | 2330 | 766 | 148 | — | — |
液态水 | 958.4566 | 4215.5 | 0.6722 | 0.000282026 | 0.06164 |
水蒸气 | 0.5976 | 2079.8 | 0.0246 | 1.22×10-3 | 0.06164 |
表1 数值模拟涉及工质的物性参数
Table 1 Physical parameters employed in the numerical simulations
材料 | 密度/(kg/m3) | 比热容/(J/(kg·K)) | 热导率/(W/(m·K)) | 黏度/(kg/(m·s)) | 气液界面表面张力系数/(N/m) |
---|---|---|---|---|---|
单晶硅 | 2330 | 766 | 148 | — | — |
液态水 | 958.4566 | 4215.5 | 0.6722 | 0.000282026 | 0.06164 |
水蒸气 | 0.5976 | 2079.8 | 0.0246 | 1.22×10-3 | 0.06164 |
1 | Deb S, Pal S, Das D C, et al. Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b[J]. Heat and Mass Transfer, 2020, 56(12): 3273-3287. |
2 | Hsu C C, Chen P H. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3713-3719. |
3 | Phan H T, Caney N, Marty P, et al. Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5459-5471. |
4 | Kumar V, Gajghate S S, Nath U, et al. Experimental studies on nucleate pool boiling heat transfer enhancement for composite nano-structure coated copper heating surface[J]. Journal of Physics: Conference Series, 2019, 1240: 012055. |
5 | Quan X J, Wang D M, Cheng P. An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid[J]. International Journal of Heat and Mass Transfer, 2017, 108: 32-40. |
6 | Zhao Z C, Zhang J J, Jia D D, et al. Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties[J]. Applied Thermal Engineering, 2017, 117: 417-426. |
7 | Zhang L, Wang T, Jiang Y Y, et al. A study of boiling on surfaces with temperature-dependent wettability by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2018, 122: 775-784. |
8 | Dong L N, Quan X J, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer, 2014, 71: 189-196. |
9 | Kim S H, Lee G C, Kang J Y, et al. Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1140-1147. |
10 | Wei J J, Guo L J, Honda H. Experimental study of boiling phenomena and heat transfer performances of FC-72 over micro-pin-finned silicon chips[J]. Heat and Mass Transfer, 2005, 41(8): 744-755. |
11 | Zhang Y H, Wei J J, Xue Y F, et al. Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity[J]. Applied Thermal Engineering, 2014, 70(1): 172-182. |
12 | Gouws G J, Sherson B, Sinnathambi A, et al. Influence of structure and wettability of porous silver surfaces on enhancing phase change heat transfer[C]//2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). San Diego, CA, 2018: 134-140. |
13 | Može M, Senegačnik M, Gregorčič P, et al. Laser-engineered microcavity surfaces with a nanoscale superhydrophobic coating for extreme boiling performance[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24419-24431. |
14 | Zhang W, Chai Y Z, Xu J L, et al. 3D heterogeneous wetting microchannel surfaces for boiling heat transfer enhancement[J]. Applied Surface Science, 2018, 457: 891-901. |
15 | Zhang B J, Kim K J, Yoon H. Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7487-7498. |
16 | 陈彦君. 电场强化纳米流体换热特性的实验与数值模拟研究[D]. 上海: 上海交通大学, 2016. |
Chen Y J. Experimental and numerical study of the heat transfer characteristics of nanofluids under high electric field[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
17 | Asadzadeh F, Esfahany M N, Etesami N. Natural convective heat transfer of Fe3O4/ethylene glycol nanofluid in electric field[J]. International Journal of Thermal Sciences, 2012, 62: 114-119. |
18 | 黄浩. 纳米金刚石和石墨烯的表面修饰及其电泳行为研究[D]. 秦皇岛: 燕山大学, 2012. |
Huang H. Study on surface modification and electrophoresis behavior for nanodiamond and graphene[D]. Qinhuangdao: Yanshan University, 2012. | |
19 | Zhou Z, Shi J X, Chen H H, et al. Two-phase flow over flooded micro-pillar structures with engineered wettability pattern[J]. International Journal of Heat and Mass Transfer, 2014, 71: 593-605. |
20 | Zou L, Wang H, Zhu X, et al. Active effect of super-hydrophobicity on droplet nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119942. |
21 | Jo H, Kim S, Park H S, et al. Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: controlled hydrophobic patterns on a hydrophilic substrate[J]. International Journal of Multiphase Flow, 2014, 62: 101-109. |
22 | Motezakker A R, Sadaghiani A K, Çelik S, et al. Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling[J]. International Journal of Heat and Mass Transfer, 2019, 135: 164-174. |
23 | Betz A R, Jenkins J, Kim C J, et al. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 733-741. |
24 | Chen X D, Qiu H H. Bubble dynamics and heat transfer on a wettability patterned surface[J]. International Journal of Heat and Mass Transfer, 2015, 88: 544-551. |
25 | Jo H, Yu D I, Noh H, et al. Boiling on spatially controlled heterogeneous surfaces: wettability patterns on microstructures[J]. Applied Physics Letters, 2015, 106(18): 181602. |
26 | Li W X, Li Q, Yu Y, et al. Enhancement of nucleate boiling by combining the effects of surface structure and mixed wettability: a lattice Boltzmann study[J]. Applied Thermal Engineering, 2020, 180: 115849. |
27 | 陈宏霞, 孙源, 宫逸飞, 等. 单晶硅表面池沸腾可视化测量及数据分析[J]. 化工学报, 2019, 70(4): 1309-1317. |
Chen H X, Sun Y, Gong Y F, et al. Visual measurement and data analysis of pool boiling on silicon surfaces[J]. CIESC Journal, 2019, 70(4): 1309-1317. | |
28 | Chen H X, Sun Y, Xiao H Y, et al. Bubble dynamics and heat transfer characteristics on a micropillar-structured surface with different nucleation site positions[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(1): 447-464. |
29 | 陈宏霞, 孙源, 肖红洋, 等. 微柱结构表面核态沸腾单气泡的数值模拟[J]. 化工进展, 2019, 38(11): 4845-4855. |
Chen H X, Sun Y, Xiao H Y, et al. Numerical simulation of single bubble boiling on micro-pillar structure surface[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4845-4855. | |
30 | Utaka Y, Kashiwabara Y, Ozaki M, et al. Heat transfer characteristics based on microlayer structure in nucleate pool boiling for water and ethanol[J]. International Journal of Heat and Mass Transfer, 2014, 68: 479-488. |
31 | Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
32 | Chen H X, Sun Y, Li L H, et al. Bubble dynamics and heat transfer performance on micro-pillars structured surfaces with various Pillars heights[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120502. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[15] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 230
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 426
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||