1 |
Ibrahim N I, Al-Sulaiman F A, Ani F N. Solar absorption systems with integrated absorption energy storage - a review [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1602-1610.
|
2 |
Legay M, Gondrexon N, Le Person S, et al. Enhancement of heat transfer by ultrasound: review and recent advances [J]. International Journal of Chemical Engineering, 2011, 2011: 1-17.
|
3 |
Delouei A A, Sajjadi H, Izadi M, et al. The simultaneous effects of nanoparticles and ultrasonic vibration on inlet turbulent flow: an experimental study [J]. Applied Thermal Engineering, 2019, 146: 268-277.
|
4 |
Chang T B, Wang Z L. Experimental investigation into effects of ultrasonic vibration on pool boiling heat transfer performance of horizontal low-finned U-tube in TiO2/R141b nanofluid [J]. Heat and Mass Transfer, 2016, 52(11): 2381-2390.
|
5 |
Chen R H, Chang T B. Heat transfer enhancement of pool boiling for a horizontal U-tube using TiO2-R141b nanofluid [J]. Journal of Mechanical Science and Technology, 2014, 28(12): 5197-5204.
|
6 |
Shen G Q, Ma L K, Zhang S X, et al. Effect of ultrasonic waves on heat transfer in Al2O3 nanofluid under natural convection and pool boiling [J]. International Journal of Heat and Mass Transfer, 2019, 138: 516-523.
|
7 |
Setareh M, Saffar-Avval M, Abdullah A. Experimental and numerical study on heat transfer enhancement using ultrasonic vibration in a double-pipe heat exchanger [J]. Applied Thermal Engineering, 2019, 159: 113867.
|
8 |
Zheng M J, Li B, Wan Z P, et al. Ultrasonic heat transfer enhancement on different structural tubes in LiBr solution [J]. Applied Thermal Engineering, 2016, 106: 625-633.
|
9 |
Song J T, Tian W, Xu X F, et al. Thermal performance of a novel ultrasonic evaporator based on machine learning algorithms [J]. Applied Thermal Engineering, 2019, 148: 438-446.
|
10 |
Tang J G, Sun L C, Wu D, et al. Effects of ultrasonic waves on subcooled pool boiling on a small plain heating surface [J]. Chemical Engineering Science, 2019, 201: 274-287.
|
11 |
Bonekamp S, Bier K. Influence of ultrasound on pool boiling heat transfer to mixtures of the refrigerants R23 and R134A [J]. International Journal of Refrigeration, 1997, 20(8): 606-615.
|
12 |
张东伟, 李凯华, 周俊杰, 等. 超声波强化传热的链式反应机理与模拟研究 [J]. 工程热物理学报, 2017, 38(1): 145-148.
|
|
Zhang D W, Li K H, Zhou J J, et al. Investigation on the chain reaction mechanism and simulation of heat transfer process enhanced by ultrasonic vibrations [J]. Journal of Engineering Thermophysics, 2017, 38(1): 145-148.
|
13 |
Kim H Y, Kim Y G, Kang B H. Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration [J]. International Journal of Heat and Mass Transfer, 2004, 47(12/13): 2831-2840.
|
14 |
Yasui K. Effects of thermal conduction on bubble dynamics near the sonoluminescence threshold [J]. The Journal of the Acoustical Society of America, 1995, 98(5): 2772-2782.
|
15 |
Liu B, Cai J, Huai X L. Heat transfer with the growth and collapse of cavitation bubble between two parallel heated walls [J]. International Journal of Heat and Mass Transfer, 2014, 78: 830-838.
|
16 |
Kanthale P, Ashokkumar M, Grieser F. Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects [J]. Ultrasonics Sonochemistry, 2008, 15(2): 143-150.
|
17 |
Kanthale P M, Brotchie A, Ashokkumar M, et al. Experimental and theoretical investigations on sonoluminescence under dual frequency conditions [J]. Ultrasonics Sonochemistry, 2008, 15(4): 629-635.
|
18 |
Ye L Z, Zhu X J, Liu Y. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution [J]. Ultrasonics Sonochemistry, 2019, 59: 104744.
|
19 |
Suo D J, Govind B, Zhang S Q, et al. Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound [J]. Ultrasonics Sonochemistry, 2018, 41: 419-426.
|
20 |
Wu H, Zhou C, Pu Z H, et al. Effect of low-frequency ultrasonic field at different power on the dynamics of a single bubble near a rigid wall [J]. Ultrasonics Sonochemistry, 2019, 58: 104704.
|
21 |
Moholkar V S. Mechanistic optimization of a dual frequency sonochemical reactor [J]. Chemical Engineering Science, 2009, 64(24): 5255-5267.
|
22 |
Zhang Y N, Zhang Y N, Li S C. The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation [J]. Ultrasonics Sonochemistry, 2016, 29: 129-145.
|
23 |
Ebrahiminia A, Mokhtari-Dizaji M, Toliyat T. Dual frequency cavitation event sensor with iodide dosimeter [J]. Ultrasonics Sonochemistry, 2016, 28: 276-282.
|
24 |
Yang X M, Church C C. A model for the dynamics of gas bubbles in soft tissue [J]. The Journal of the Acoustical Society of America, 2005, 118(6): 3595-3606.
|
25 |
Rayleigh O M F R S. Ⅷ. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94-98.
|
26 |
Gogate P R, Tatake P A, Kanthale P M, et al. Mapping of sonochemical reactors: review, analysis, and experimental verification [J]. AIChE Journal, 2002, 48(7): 1542-1560.
|
27 |
Kaita Y. Thermodynamic properties of lithium bromide-water solutions at high temperatures [J]. International Journal of Refrigeration, 2001, 24(5): 374-390.
|
28 |
Malhotra A, Panda D M R. Thermodynamic properties of superheated and supercritical steam [J]. Applied Energy, 2001, 68(4): 387-393.
|
29 |
Suo D J, Guo S J, Lin W L, et al. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study [J]. Physics in Medicine and Biology, 2015, 60(18): 7403-7418.
|
30 |
李争彩, 林书玉. 超声空化影响因素的数值模拟研究[J]. 陕西师范大学学报(自然科学版), 2008, 36(1): 38-42.
|
|
Li Z C, Lin S Y. Numerical simulation of the factors influencing ultrasonic cavitation [J]. Journal of Shaanxi Normal University (Natural Science Edition), 2008, 36(1): 38-42.
|