1 |
孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135.
|
|
Sun X K, Li Q. Research on enhanced boiling heat transfer of multilevel composite wick structure[J]. CIESC Journal, 2022, 73(3): 1127-1135.
|
2 |
Phan H T, Marty N C P, Colasson S . et al. Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism[J]. International Journal of Heat Transfer, 2009, 52: 5459-5471.
|
3 |
陈宏霞, 黄林滨, 宫逸飞. 多孔结构及表面浸润性对池沸腾传热影响的研究进展[J]. 化工进展, 2017, 36(8): 2798-2808.
|
|
Chen H X, Huang L B, Gong Y F. Progress on boiling heat transfer from porous structure and surface wettability[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2798-2808.
|
4 |
Ahn H S, Chan L, Kim H, et al. Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface[J]. Nuclear Engineering and Design, 2010, 240(10): 3350-3360.
|
5 |
Honda H, Takamastu H, Wei J J. Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness[J]. Journal of Heat Transfer, 2002, 124(2): 383-390.
|
6 |
Wei J J, Honda H. Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72[J]. International Journal of Heat and Mass Transfer, 2003, 46(21): 4059-4070.
|
7 |
Wei J J, Guo L J, Honda H. Experimental study of boiling phenomena and heat transfer performances of FC-72 over micro-pin-finned silicon chips[J]. Heat and Mass Transfer, 2005, 41(8): 744-755.
|
8 |
Kim S H, Lee G C, Kang J Y, et al. Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1140-1147.
|
9 |
Hsu W T, Lee D, Lee N, et al. Enhancement of flow boiling heat transfer using heterogeneous wettability patterned surfaces with varying inter-spacing[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120596.
|
10 |
Sadaghiani A K, Altay R, Noh H, et al. Effects of bubble coalescence on pool boiling heat transfer and critical heat flux — a parametric study based on artificial cavity geometry and surface wettability[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118952.
|
11 |
Yao Z, Lu Y W, Kandlikar S G. Effects of nanowire height on pool boiling performance of water on silicon chips[J]. International Journal of Thermal Sciences, 2011, 50(11): 2084-2090.
|
12 |
Bock B D, Bucci M, Markides C N, et al. Pool boiling of refrigerants over nanostructured and roughened tubes[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120387.
|
13 |
Bock B D, Bucci M, Markides C N, et al. Falling film boiling of refrigerants over nanostructured and roughened tubes: heat transfer, dryout and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120452.
|
14 |
Dewangan A K, Kumar A, Kumar R. Experimental study of nucleate boiling heat transfer of R-134a and R-600a on thermal spray coating surfaces[J]. International Journal of Thermal Sciences, 2016, 110: 304-313.
|
15 |
Dewangan A K, Kumar A, Kumar R. Experimental study of nucleate pool boiling of R-134a and R-410a on a porous surface[J]. Heat Transfer Engineering, 2019, 40(15): 1249-1258.
|
16 |
Moita A S, Teodori E, Moreira A L N. Influence of surface topography in the boiling mechanisms[J]. International Journal of Heat and Fluid Flow, 2015, 52: 50-63.
|
17 |
Li C, Wang Z K, Wang P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8): 1084-1088.
|
18 |
Chen Y, Mo D C, Zhao H B, et al. Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays[J]. Science in China Series E: Technological Sciences, 2009, 52(6): 1596-1600.
|
19 |
Teodori E, Moita A S, Moreira A L N. Characterization of pool boiling mechanisms over micro-patterned surfaces using PIV[J]. International Journal of Heat and Mass Transfer, 2013, 66: 261-270.
|
20 |
Pontes P, Cautela R, Teodori E, et al. Experimental description of bubble dynamics and heat transfer processes occurring on the pool boiling of water on biphilic surfaces[J]. Applied Thermal Engineering, 2020, 178: 115507.
|
21 |
Nimkar N D, Bhavnani S H, Jaeger R C. Effect of nucleation site spacing on the pool boiling characteristics of a structured surface[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 2829-2839.
|
22 |
Dong L N, Quan X J, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer, 2014, 71: 189-196.
|
23 |
Song Y, Gong S, Vaartstra G, et al. Microtube surfaces for the simultaneous enhancement of efficiency and critical heat flux during pool boiling[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12629-12635.
|
24 |
Wen R F, Li Q, Wang W, et al. Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays[J]. Nano Energy, 2017, 38: 59-65.
|
25 |
Chen H X, Sun Y, Xiao H Y, et al. Bubble dynamics and heat transfer characteristics on a micropillar-structured surface with different nucleation site positions[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(1): 447-464.
|
26 |
Yabuki T, Nakabeppu O. Heat transfer mechanisms in isolated bubble boiling of water observed with MEMS sensor[J]. International Journal of Heat and Mass Transfer, 2014, 76: 286-297.
|
27 |
Chen Z H, Utaka Y. On heat transfer and evaporation characteristics in the growth process of a bubble with microlayer structure during nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2015, 81: 750-759.
|
28 |
Utaka Y, Kashiwabara Y, Ozaki M. Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 222-230.
|
29 |
陈宏霞, 孙源, 宫逸飞, 等. 单晶硅表面池沸腾可视化测量及数据分析[J]. 化工学报, 2019, 70(4): 1309-1317.
|
|
Chen H X, Sun Y, Gong Y F, et al. Visual measurement and data analysis of pool boiling on silicon surfaces[J]. CIESC Journal, 2019, 70: 1309-1317.
|
30 |
Chen H X, Sun Y, Li L H, et al. Bubble dynamics and heat transfer performance on micro-pillars structured surfaces with various pillars heights[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120502.
|