化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1205-1215.DOI: 10.11949/0438-1157.20221345
收稿日期:
2022-10-11
修回日期:
2023-01-03
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
杨思宇
作者简介:
顾学荣(1997—),男,硕士研究生,202120124398@mail.scut.edu.cn
基金资助:
Xuerong GU(), Shuoshi LIU, Siyu YANG(
)
Received:
2022-10-11
Revised:
2023-01-03
Online:
2023-03-05
Published:
2023-04-19
Contact:
Siyu YANG
摘要:
化工流程模拟优化问题常常具有高维、非线性的特点,使得仿真计算难以收敛。过长的求解时间是调度优化和运行优化的主要瓶颈之一。采用代理模型对机理模型进行替代是降低计算复杂度、保证结果准确性的有效途径。Kriging代理模型具有较强的非线性近似性,但处理高维问题依然较为困难。因此,本文研究并行EGO(efficient global optimization)算法与代理模型集成,并将模型应用于化工过程。并行EGO算法以Kriging代理模型的预测函数和误差函数为基础,先推导出样本分布概率密度函数与累积分布函数相结合的解析表达式;然后通过PEI(pseudo expected improvement)准则得到新的样本点以更新代理模型;最后结合改进的差分进化算法对优化参数进行全局搜索。在保证结果准确性的前提下,将本文算法与其他优化算法进行比较。8个多峰测试函数的测试结果表明,该算法的收敛速度提高了85%。然后将其应用于双级氨吸收制冷过程的模拟,结果表明该方法的模拟误差小于0.01%,优化时间从9846 s缩短至3705 s。
中图分类号:
顾学荣, 刘硕士, 杨思宇. 基于并行EGO和代理模型辅助的多参数优化方法研究[J]. 化工学报, 2023, 74(3): 1205-1215.
Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model[J]. CIESC Journal, 2023, 74(3): 1205-1215.
函数 | 参数 |
---|---|
Hartman3 | |
Hartman6 | |
表1 Hartman3和Hartman6相关参数
Table 1 Parameters related to Hartman3 and Hartman6
函数 | 参数 |
---|---|
Hartman3 | |
Hartman6 | |
测试函数 | 变量维度 | 初始样本点数 | 最大迭代次数 |
---|---|---|---|
Six-hump | 2 | 20 | 400 |
Branin | 2 | 20 | 400 |
GoldPrice | 2 | 20 | 400 |
Hartman3 | 3 | 30 | 400 |
Shekekl5 | 4 | 40 | 400 |
Shekekl7 | 4 | 40 | 400 |
Shekekl10 | 4 | 40 | 400 |
Hartman6 | 6 | 60 | 400 |
表2 测试函数
Table 2 Test functions
测试函数 | 变量维度 | 初始样本点数 | 最大迭代次数 |
---|---|---|---|
Six-hump | 2 | 20 | 400 |
Branin | 2 | 20 | 400 |
GoldPrice | 2 | 20 | 400 |
Hartman3 | 3 | 30 | 400 |
Shekekl5 | 4 | 40 | 400 |
Shekekl7 | 4 | 40 | 400 |
Shekekl10 | 4 | 40 | 400 |
Hartman6 | 6 | 60 | 400 |
测试函数 | 变量维度 | EGO算法 | 并行EGO算法 | |||||
---|---|---|---|---|---|---|---|---|
q=1 | q=2 | q=4 | q=6 | q=8 | q=10 | |||
Six-hump | 2 | 29.4 | 16.2 | 9.0 | 6.9 | 6.1 | 4.4 | |
Branin | 2 | 31.9 | 14.5 | 10.8 | 7.5 | 6.2 | 5.3 | |
GoldPrice | 2 | 97.8 | 47.3 | 24.3 | 21.2 | 15.6 | 11.6 | |
Hartman3 | 3 | 16.0 | 14.0 | 9.0 | 7.0 | 6.0 | 4.0 | |
Shekekl5 | 4 | 67.9 | 37.9 | 17.7 | 13.7 | 10.4 | 9.6 | |
Shekekl7 | 4 | 165.0 | 54.1 | 33.5 | 19.8 | 17.2 | 13.0 | |
Shekekl10 | 4 | 84.6 | 43.3 | 26.5 | 17.0 | 12.6 | 10.9 | |
Hartman6 | 6 | 28.7 | 12.6 | 8.3 | 6.9 | 5.7 | 4.9 |
表3 收敛到最优解所需的迭代次数
Table 3 The number of iterations required to converge to the optimal solution
测试函数 | 变量维度 | EGO算法 | 并行EGO算法 | |||||
---|---|---|---|---|---|---|---|---|
q=1 | q=2 | q=4 | q=6 | q=8 | q=10 | |||
Six-hump | 2 | 29.4 | 16.2 | 9.0 | 6.9 | 6.1 | 4.4 | |
Branin | 2 | 31.9 | 14.5 | 10.8 | 7.5 | 6.2 | 5.3 | |
GoldPrice | 2 | 97.8 | 47.3 | 24.3 | 21.2 | 15.6 | 11.6 | |
Hartman3 | 3 | 16.0 | 14.0 | 9.0 | 7.0 | 6.0 | 4.0 | |
Shekekl5 | 4 | 67.9 | 37.9 | 17.7 | 13.7 | 10.4 | 9.6 | |
Shekekl7 | 4 | 165.0 | 54.1 | 33.5 | 19.8 | 17.2 | 13.0 | |
Shekekl10 | 4 | 84.6 | 43.3 | 26.5 | 17.0 | 12.6 | 10.9 | |
Hartman6 | 6 | 28.7 | 12.6 | 8.3 | 6.9 | 5.7 | 4.9 |
符号 | 物理意义 | 下限 | 上限 |
---|---|---|---|
x1 | 氨气( | 5000 | 7000 |
x2 | 闪蒸器气相分数 | 0.05 | 0.35 |
x3 | 闪蒸器操作压力/kPa | 1.0 | 1.4 |
x4 | 换热器1换热温度/℃ | 40 | 50 |
x5 | 泵压(泵1)/kPa | 1450 | 1550 |
x6 | 预热器换热温度/℃ | 10200 | 10700 |
x7 | 精馏塔回流比 | 0.4 | 0.6 |
x8 | 精馏塔塔顶采出率 | 0.45 | 0.65 |
x9 | 过冷器换热温度/℃ | 10 | 15 |
x10 | 压力调节阀/kPa | 70 | 80 |
x11 | 压缩机排气压力/kPa | 100 | 120 |
x12 | 换热器2换热温度/℃ | 35 | 45 |
x13 | 吸收器换热温度/℃ | 40 | 50 |
x14 | 泵压(泵2)/kPa | 700 | 900 |
x15 | 出口氨溶液(S)分流率 | 0.01 | 0.05 |
表4 氨吸收制冷流程的优化变量及约束范围
Table 4 Optimization variables and their constraints on ammonia absorption refrigeration
符号 | 物理意义 | 下限 | 上限 |
---|---|---|---|
x1 | 氨气( | 5000 | 7000 |
x2 | 闪蒸器气相分数 | 0.05 | 0.35 |
x3 | 闪蒸器操作压力/kPa | 1.0 | 1.4 |
x4 | 换热器1换热温度/℃ | 40 | 50 |
x5 | 泵压(泵1)/kPa | 1450 | 1550 |
x6 | 预热器换热温度/℃ | 10200 | 10700 |
x7 | 精馏塔回流比 | 0.4 | 0.6 |
x8 | 精馏塔塔顶采出率 | 0.45 | 0.65 |
x9 | 过冷器换热温度/℃ | 10 | 15 |
x10 | 压力调节阀/kPa | 70 | 80 |
x11 | 压缩机排气压力/kPa | 100 | 120 |
x12 | 换热器2换热温度/℃ | 35 | 45 |
x13 | 吸收器换热温度/℃ | 40 | 50 |
x14 | 泵压(泵2)/kPa | 700 | 900 |
x15 | 出口氨溶液(S)分流率 | 0.01 | 0.05 |
变量 | q=1 | q=2 | q=4 | q=6 | q=8 | q=10 |
---|---|---|---|---|---|---|
x1 | 7000.00 | 5954.92 | 5959.70 | 5950.70 | 5952.17 | 5953.89 |
x2 | 0.16 | 0.20 | 0.24 | 0.14 | 0.13 | 0.17 |
x3 | 800.67 | 807.86 | 806.46 | 804.51 | 804.41 | 803.06 |
x4 | 42.79 | 46.63 | 48.87 | 46.58 | 47.45 | 48.16 |
x5 | 1550.00 | 1497.80 | 1507.33 | 1506.61 | 1500.00 | 1497.38 |
x6 | 10.00 | 5.92 | 7.63 | 6.34 | 5.95 | 5.71 |
x7 | 0.47 | 0.48 | 0.45 | 0.51 | 0.46 | 0.52 |
x8 | 0.65 | 0.53 | 0.61 | 0.57 | 0.57 | 0.56 |
x9 | 10.00 | 11.95 | 12.61 | 10.00 | 10.00 | 10.92 |
x10 | 70.00 | 74.51 | 70.67 | 76.00 | 71.21 | 71.00 |
x11 | 100.24 | 110.65 | 100.00 | 107.04 | 106.37 | 108.15 |
x12 | 43.83 | 39.79 | 42.72 | 41.98 | 45.00 | 41.01 |
x13 | 50.00 | 42.41 | 40.00 | 45.80 | 44.00 | 40.42 |
x14 | 800.00 | 819.71 | 813.15 | 816.92 | 806.09 | 808.41 |
x15 | 0.04 | 0.04 | 0.05 | 0.04 | 0.03 | 0.04 |
绝对误差 | 0.1566 | 0.0041 | 0.0010 | 0.00058 | 0.00044 | 0.00016 |
表5 参数优化结果
Table 5 The results of parameter optimization
变量 | q=1 | q=2 | q=4 | q=6 | q=8 | q=10 |
---|---|---|---|---|---|---|
x1 | 7000.00 | 5954.92 | 5959.70 | 5950.70 | 5952.17 | 5953.89 |
x2 | 0.16 | 0.20 | 0.24 | 0.14 | 0.13 | 0.17 |
x3 | 800.67 | 807.86 | 806.46 | 804.51 | 804.41 | 803.06 |
x4 | 42.79 | 46.63 | 48.87 | 46.58 | 47.45 | 48.16 |
x5 | 1550.00 | 1497.80 | 1507.33 | 1506.61 | 1500.00 | 1497.38 |
x6 | 10.00 | 5.92 | 7.63 | 6.34 | 5.95 | 5.71 |
x7 | 0.47 | 0.48 | 0.45 | 0.51 | 0.46 | 0.52 |
x8 | 0.65 | 0.53 | 0.61 | 0.57 | 0.57 | 0.56 |
x9 | 10.00 | 11.95 | 12.61 | 10.00 | 10.00 | 10.92 |
x10 | 70.00 | 74.51 | 70.67 | 76.00 | 71.21 | 71.00 |
x11 | 100.24 | 110.65 | 100.00 | 107.04 | 106.37 | 108.15 |
x12 | 43.83 | 39.79 | 42.72 | 41.98 | 45.00 | 41.01 |
x13 | 50.00 | 42.41 | 40.00 | 45.80 | 44.00 | 40.42 |
x14 | 800.00 | 819.71 | 813.15 | 816.92 | 806.09 | 808.41 |
x15 | 0.04 | 0.04 | 0.05 | 0.04 | 0.03 | 0.04 |
绝对误差 | 0.1566 | 0.0041 | 0.0010 | 0.00058 | 0.00044 | 0.00016 |
1 | 杨路, 刘硕士, 罗小艳, 等. MTO烯烃分离过程的多目标操作优化[J]. 化工学报, 2020, 71(10): 4720-4732. |
Yang L, Liu S S, Luo X Y, et al. Multi-objective operation optimization of olefin separation process for MTO plant[J]. CIESC Journal, 2020, 71(10): 4720-4732. | |
2 | 陈志杰, 金晓明. 精馏塔系的软测量建模与优化策略研究[J]. 计算机与应用化学, 2015, 32(3): 261-265. |
Chen Z J, Jin X M. Research of soft sensor and optimization on distillation column system[J]. Computers and Applied Chemistry, 2015, 32(3): 261-265. | |
3 | Javaloyes-Antón J, Caballero J A, Ruiz-Femenia R. Rigorous design of complex distillation columns using process simulators and the particle swarm optimization algorithm[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15621-15634. |
4 | Jiang P, Du W L. Multi-objective modeling and optimization for scheduling of cracking furnace systems[J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 992-999. |
5 | Inamdar S V, Gupta S K, Saraf D N. Multi-objective optimization of an industrial crude distillation unit using the Elitist non-dominated sorting genetic algorithm[J]. Chemical Engineering Research and Design, 2004, 82(5): 611-623. |
6 | 刘涛, 苏成利. 气体分馏装置的流程模拟及多目标优化[J]. 石油化工高等学校学报, 2013, 26(1): 76-80. |
Liu T, Su C L. Simulation analysis and multi-objective optimization of gas fractionation unit[J]. Journal of Petrochemical Universities, 2013, 26(1): 76-80. | |
7 | Reddy P S, Rani K Y, Patwardhan S C. Multi-objective optimization of a reactive batch distillation process using reduced order model[J]. Computers & Chemical Engineering, 2017, 106: 40-56. |
8 | Tang M, Liu Y M, Durlofsky L J. A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems[J]. Journal of Computational Physics, 2020, 413: 109456. |
9 | Slot R M M, Sørensen J D, Sudret B, et al. Surrogate model uncertainty in wind turbine reliability assessment[J]. Renewable Energy, 2020, 151: 1150-1162. |
10 | 范才彬. 基于稀疏表达的多项式响应面模型及其仿真应用研究[D]. 武汉: 华中科技大学, 2015. |
Fan C B. Sparsity-promoting polynomial response surface and its application in simulation[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
11 | 龙腾, 刘建, WANG G Gary, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报, 2016, 52(14): 79-105. |
Long T, Liu J, Wang G G, et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering, 2016, 52(14): 79-105. | |
12 | Eason J, Cremaschi S. Adaptive sequential sampling for surrogate model generation with artificial neural networks[J]. Computers & Chemical Engineering, 2014, 68: 220-232. |
13 | 张琳, 汪廷华, 周慧颖. 基于群智能算法的SVR参数优化研究进展[J]. 计算机工程与应用, 2021, 57(16): 50-64. |
Zhang L, Wang T H, Zhou H Y. Research progress on parameter optimization of SVR based on swarm intelligence algorithm[J]. Computer Engineering and Applications, 2021, 57(16): 50-64. | |
14 | Zhan D W, Qian J C, Cheng Y S. Pseudo expected improvement criterion for parallel EGO algorithm[J]. Journal of Global Optimization, 2017, 68(3): 641-662. |
15 | González-Gorbeña E, Qassim R Y, Rosman P. Optimisation of hydrokinetic turbine array layouts via surrogate modelling[J]. Renewable Energy, 2016, 93: 45-57. |
16 | Yu H, Tan Y, Sun C, et al. An adaptive model selection strategy for surrogate-assisted particle swarm optimization algorithm[C]//2016 IEEE Symposium Series on Computational Intelligence (SSCI). Los Alamitos: IEEE Computer Society Press, 2016: 1-8. |
17 | Liau L C K, Yang T C K, Tsai M T. Expert system of a crude oil distillation unit for process optimization using neural networks[J]. Expert Systems with Applications, 2004, 26(2): 247-255. |
18 | Singh P, Couckuyt I, Elsayed K, et al. Shape optimization of a cyclone separator using multi-objective surrogate-based optimization[J]. Applied Mathematical Modelling, 2016, 40(5/6): 4248-4259. |
19 | 祁荣宾, 何镓梁, 靳文浩, 等. 基于Kriging代理模型的PX氧化过程优化[J]. 华东理工大学学报(自然科学版), 2012, 38(6): 712-717. |
Qi R B, He J L, Jin W H, et al. PX oxidation process optimization based on Kriging surrogate model[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2012, 38(6): 712-717. | |
20 | 刘思乐, 王修纲, 吴静, 等. 基于Kriging代理模型的复杂精馏系统操作参数优化[J]. 石油炼制与化工, 2020, 51(1): 114-120. |
Liu S L, Wang X G, Wu J, et al. Operation parameter optimization of complex distillation system based on Kriging surrogate[J]. Petroleum Processing and Petrochemicals, 2020, 51(1): 114-120. | |
21 | Ge X L, Yuan X G, Ao C, et al. Simulation based approach to optimal design of dividing wall column using random search method[J]. Computers & Chemical Engineering, 2014, 68: 38-46. |
22 | Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. |
23 | Krige D. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119-139. |
24 | Sacks J, Welch W, Mitchell T J, et al. Design and analysis of computer experiments: rejoinder[J]. Statistical Science, 1989, 4: 433-435. |
25 | Cressie N. The origins of Kriging[J]. Mathematical Geology, 1990, 22(3): 239-252. |
26 | ForresterA I J, SóbesterA, KeaneA J. Engineering Design via Surrogate Modelling: A Practical Guide[M]. Chichester, West Sussex, England: J. Wiley, 2008. |
27 | Xing J, Luo Y, Gao Z. A global optimization strategy based on the Kriging surrogate model and parallel computing[J]. Structural and Multidisciplinary Optimization, 2020, 62(1): 405-417. |
28 | Toal D J J, Bressloff N W, Keane A J. Kriging hyperparameter tuning strategies[J]. AIAA Journal, 2008, 46(5): 1240-1252. |
29 | Kalagnanam J R, Diwekar U M. An efficient sampling technique for off-line quality control[J]. Technometrics, 1997, 39(3): 308-319. |
30 | Lophaven S N, Nielsen H B, Søndergaard J. DACE: a Matlab Kriging Toolbox[M]. Lyngby, Denmark: IMM, Informatics and Mathematical Modelling, The Technical University of Denmark, 2002. |
31 | Viana F A C, Haftka R T, Watson L T. Efficient global optimization algorithm assisted by multiple surrogate techniques[J]. Journal of Global Optimization, 2013, 56(2): 669-689. |
32 | Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
33 | Liu S, Qian Y, Li D, et al. Multi-scenario scheduling optimization for a novel double-stage ammonia absorption refrigeration system incorporating an organic Rankine cycle[J]. Energy Conversion and Management, 2022, 270: 116170. |
[1] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[2] | 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646. |
[3] | 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269. |
[4] | 赵克凡, 贾胜坤, 罗祎青, 袁希钢. 基于在线Kriging模型的隔板塔优化方法[J]. 化工学报, 2022, 73(1): 332-341. |
[5] | 徐健元, 吴艳阳, 徐菊美, 彭阳峰. 2 kPa下均三甲苯-偏三甲苯与均三甲苯-邻甲乙苯体系二元汽液相平衡数据研究及精馏模拟[J]. 化工学报, 2021, 72(9): 4504-4510. |
[6] | 陆至彬, 谢星, 鲁思达, 何畅, 张冰剑, 陈清林. 基于代理模型的含盐废水多级纳滤系统的过程优化设计[J]. 化工学报, 2021, 72(3): 1400-1408. |
[7] | 陆至彬, 瞿景辉, 刘桦, 何畅, 张冰剑, 陈清林. 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72(3): 1496-1503. |
[8] | 杨辉, 代文豪, 陆荣秀, 朱建勇. 基于分离系数校正的稀土萃取流程模拟[J]. 化工学报, 2020, 71(7): 3180-3190. |
[9] | 郑捷宇, 李广鹏, 厉彦忠, 司标, 杨宇杰. 利用LNG冷能的空分系统换热网络布置及多能级匹配性能[J]. 化工学报, 2015, 66(S2): 76-84. |
[10] | 范洋, 李文英, 谢克昌. 褐煤热解-气化-制油系统的CO2减排策略[J]. 化工学报, 2015, 66(8): 3204-3209. |
[11] | 董晓杨, 赵浩, 冯毅萍, 荣冈. 基于流程模拟的常减压装置过程操作与生产计划集成优化[J]. 化工学报, 2015, 66(1): 237-243. |
[12] | 王超, 陈冠益, 兰维娟, 马文超. 生物质快速热解制油试验及流程模拟[J]. 化工学报, 2014, 65(2): 679-683. |
[13] | 叶贞成, 钱智媛, 罗娜. 基于EGO算法的常压塔能量优化[J]. 化工学报, 2014, 65(12): 4929-4934. |
[14] | 吕陈秋,顾爱军,张宇航,谢振威. 基于Aspen Polymer的聚酯聚合反应研究及流程模拟[J]. 化工进展, 2014, 33(05): 1086-1092. |
[15] | 隋 红1,葛成荫1,李鑫钢1,2. 页岩油冷凝回收油洗工艺模拟与优化[J]. 化工进展, 2013, 32(07): 1519-1525. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||