化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1399-1408.DOI: 10.11949/0438-1157.20221316
收稿日期:
2022-10-08
修回日期:
2022-12-19
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
徐新宇
作者简介:
王帅(1999—),男,硕士研究生,3196788849@qq.com
基金资助:
Shuai WANG(), Fukai YANG, Xinyu XU()
Received:
2022-10-08
Revised:
2022-12-19
Online:
2023-03-05
Published:
2023-04-19
Contact:
Xinyu XU
摘要:
利用环氧大豆油分别与乙醇和苯基磷酸发生开环反应,制备了两种不同的大豆油基多元醇(Polyol-E与Polyol-PPOA),将二者按照不同的配比与异氰酸酯(PM200)反应制备了硬质聚氨酯泡沫材料。对混合多元醇制备的硬质聚氨酯泡沫材料的泡孔结构、密度、力学性能及阻燃性能进行了测试和分析。测试结果表明,随着Polyol-PPOA质量分数的增加,样品的泡孔数量先减少后增加,泡孔尺寸先增大后减小。密度随着Polyol-PPOA的用量增加先增加后减小。压缩强度呈现先降低后升高的趋势,Polyol-PPOA为70%(质量)时的压缩强度达到0.133 MPa,在800℃时的残炭率达到17.57%,极限氧指数也在这时达到最高,为23.10%。
中图分类号:
王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408.
Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam[J]. CIESC Journal, 2023, 74(3): 1399-1408.
Samples | Polyol-E/g | Polyol-PPOA/g | H2O/ g | A1/ g | T9/ g | AK-158/ g | PM-200/ g |
---|---|---|---|---|---|---|---|
PUF-0 | 100 | 0 | 2.50 | 0.50 | 0.15 | 0.70 | 73.20 |
PUF-1 | 90 | 10 | 2.50 | 0.50 | 0.15 | 0.70 | 70.32 |
PUF-2 | 70 | 30 | 2.50 | 0.50 | 0.15 | 0.70 | 64.56 |
PUF-3 | 50 | 50 | 2.50 | 0.50 | 0.15 | 0.70 | 58.82 |
PUF-4 | 30 | 70 | 2.50 | 0.50 | 0.15 | 0.70 | 53.06 |
表 1 PUF样品实验配方
Table 1 Polyurethane foam material formulation
Samples | Polyol-E/g | Polyol-PPOA/g | H2O/ g | A1/ g | T9/ g | AK-158/ g | PM-200/ g |
---|---|---|---|---|---|---|---|
PUF-0 | 100 | 0 | 2.50 | 0.50 | 0.15 | 0.70 | 73.20 |
PUF-1 | 90 | 10 | 2.50 | 0.50 | 0.15 | 0.70 | 70.32 |
PUF-2 | 70 | 30 | 2.50 | 0.50 | 0.15 | 0.70 | 64.56 |
PUF-3 | 50 | 50 | 2.50 | 0.50 | 0.15 | 0.70 | 58.82 |
PUF-4 | 30 | 70 | 2.50 | 0.50 | 0.15 | 0.70 | 53.06 |
Sample | OH/(mg KOH/g) | Mn | Mw | PD |
---|---|---|---|---|
ESO | — | 1057 | 1107 | 1.05 |
Polyol-E | 154.56 | 1148 | 1232 | 1.07 |
Polyol-PPOA | 112.86 | 1833 | 3110 | 1.70 |
表 2 ESO与SOPs的物性参数
Table 2 Physical parameters of ESO and SOPs
Sample | OH/(mg KOH/g) | Mn | Mw | PD |
---|---|---|---|---|
ESO | — | 1057 | 1107 | 1.05 |
Polyol-E | 154.56 | 1148 | 1232 | 1.07 |
Polyol-PPOA | 112.86 | 1833 | 3110 | 1.70 |
Sample | T5%/℃ | T10%/℃ | T50%/℃ | Tmax/℃ | Residual/% |
---|---|---|---|---|---|
PUF-0 | 269 | 302 | 422 | 487 | 15.05 |
PUF-1 | 259 | 297 | 432 | 484 | 15.69 |
PUF-2 | 249 | 289 | 431 | 474 | 16.55 |
PUF-3 | 239 | 274 | 434 | 466 | 16.66 |
PUF-4 | 240 | 275 | 432 | 465 | 17.57 |
表 3 PUF样品的热重数据
Table 3 Thermogravimetric data of PUF
Sample | T5%/℃ | T10%/℃ | T50%/℃ | Tmax/℃ | Residual/% |
---|---|---|---|---|---|
PUF-0 | 269 | 302 | 422 | 487 | 15.05 |
PUF-1 | 259 | 297 | 432 | 484 | 15.69 |
PUF-2 | 249 | 289 | 431 | 474 | 16.55 |
PUF-3 | 239 | 274 | 434 | 466 | 16.66 |
PUF-4 | 240 | 275 | 432 | 465 | 17.57 |
Samples | LOI/% |
---|---|
PUF-0 | 20.15 |
PUF-1 | 20.95 |
PUF-4 | 23.10 |
表 4 PUF样品的极限氧指数
Table 4 Limiting oxygen index data of PUF
Samples | LOI/% |
---|---|
PUF-0 | 20.15 |
PUF-1 | 20.95 |
PUF-4 | 23.10 |
1 | 王强, 杨林, 刘敏. 聚氨酯制品的应用现状及发展趋势[J]. 辽宁化工, 2003, 32(7): 289-290. |
Wang Q, Yang L, Liu M. Application present situation and development prospect of polyurethane products[J]. Liaoning Chemical Industry, 2003, 32(7): 289-290. | |
2 | 方秀华. 聚氨酯泡沫塑料发展概况[J]. 聚氨酯工业, 2000, 15(4): 6-10. |
Fang X H. New developments in polyurethane foams[J]. Polyurethane Industry, 2000, 15(4): 6-10. | |
3 | 李海涛, 朱锡, 石勇, 等. 多孔性吸声材料的研究进展[J]. 材料科学与工程学报, 2004, 22(6): 934-938. |
Li H T, Zhu X, Shi Y, et al. Developments of porous sound-absorbing materials[J]. Journal of Materials Science and Engineering, 2004, 22(6): 934-938. | |
4 | Veronese V B, Menger R K, Forte M M de C, et al. Rigid polyurethane foam based on modified vegetable oil[J]. Journal of Applied Polymer Science, 2011, 120(1): 530-537. |
5 | 冷雪冬, 张凤山, 蔡小霞, 等. 生物基聚氨酯泡沫材料研究进展[J]. 齐鲁工业大学学报, 2020, 34(3): 1-10. |
Leng X D, Zhang F S, Cai X X, et al. Research progress on bio-based polyurethane foam[J]. Journal of Qilu University of Technology, 2020, 34(3): 1-10. | |
6 | 陈晓波. 环氧丙烷下游产业链生产技术与市场分析[J]. 石油化工技术与经济, 2022, 38(5): 26-30, 54. |
Chen X B. Production technology and market analysis of propylene oxide downstream industry chain[J]. Technology & Economics in Petrochemicals, 2022, 38(5): 26-30, 54. | |
7 | Guo A, Zhang W, Petrovic Z S. Structure-property relationships in polyurethanes derived from soybean oil[J]. Journal of Materials Science, 2006, 41(15): 4914-4920. |
8 | 贾洪. 蓖麻油聚醚多元醇在聚氨酯软泡中的应用[J]. 现代农业研究, 2020, 26(3): 56-57. |
Jia H. Application of castor oil polyether polyols in polyurethane soft foam[J]. Modern Agriculture Research, 2020, 26(3): 56-57. | |
9 | Kachhia P, Patel R. Castor-oil based polyurethane/NiCo-OLDH nanocomposites with improved flame retardant properties[J]. Materials Today: Proceedings, 2022, 57: 145-150. |
10 | Liu F, Chen S M. The preparation and characterization of polyurethane foam with coconut oil polyol and rapeseed oil polyol[J].Journal of Polymers and the Environment, 2021, 29(8): 2421-2434. |
11 | 周家兴, 刘志明, 李旭. 次磷酸铝添加量对碱木质素基聚氨酯泡沫阻燃性能的影响[J]. 生物质化学工程, 2019, 53(2): 1-6. |
Zhou J X, Liu Z M, Li X. Effect of aluminum hypophosphite addition on flame retardancy of alkali lignin based polyurethane foam[J]. Biomass Chemical Engineering, 2019, 53(2): 1-6. | |
12 | Zhang J, Tang J J, Zhang J X. Polyols prepared from ring-opening epoxidized soybean oil by a castor oil-based fatty diol[J]. International Journal of Polymer Science, 2015, 2015: 529235. |
13 | 丁照洋, 高思, 王念贵. 聚氨酯用高羟值大豆油多元醇的合成与表征[J]. 胶体与聚合物, 2016, 34(3): 107-109. |
Ding Z Y, Gao S, Wang N G. Synthesis and characterization of soybean oil polyolswith high hydroxyl valueused for polyurethane[J]. Chinese Journal of Colloid & Polymer, 2016, 34(3): 107-109. | |
14 | 饶舟, 李俊梅, 夏会华, 等. 环氧大豆油改性水性聚氨酯的制备及性能表征[J]. 化工新型材料, 2013, 41(8): 136-138. |
Rao Z, Li J M, Xia H H, et al. Preparation, characterization and performance testing of epoxy soybean oil modified waterborne polyurethane[J]. New Chemical Materials, 2013, 41(8): 136-138. | |
15 | Chen M J, Wang X, Tao M C, et al. Full substitution of petroleum-based polyols by phosphorus-containing soy-based polyols for fabricating highly flame-retardant polyisocyanurate foams[J]. Polymer Degradation and Stability, 2018, 154: 312-322. |
16 | 秦桑路, 杨振国. 添加型阻燃剂对聚氨酯硬泡阻燃性能的影响[J]. 高分子材料科学与工程, 2007, 23(4): 167-169, 173. |
Qin S L, Yang Z G. Effect of flame-retardants additive on the flame retardancy of rigid polyurethane foam[J]. Polymer Materials Science & Engineering, 2007, 23(4): 167-169, 173. | |
17 | 李清英, 夏正斌, 范方强, 等. 反应型含磷阻燃剂的应用研究进展[J]. 化工进展, 2012, 31(8): 1751-1755, 1774. |
Li Q Y, Xia Z B, Fan F Q, et al. Research progress in reactive phosphorus-containing flame retardant[J]. Chemical Industry and Engineering Progress, 2012, 31(8): 1751-1755, 1774. | |
18 | 张佳燕, 刘博文, 王玉忠, 等. 聚氨酯泡沫无卤阻燃研究进展[J]. 高分子学报, 2022, 53(7): 842-855. |
Zhang J Y, Liu B W, Wang Y Z, et al. Recent advances in halogen-free flame-retardant polyurethane foams[J]. Acta Polymerica Sinica, 2022, 53(7): 842-855. | |
19 | 吴昊, 王庭慰, 孔新平. 含磷多元醇的合成及其阻燃改性PUR硬泡[J]. 工程塑料应用, 2017, 45(2): 116-119, 123. |
Wu H, Wang T W, Kong X P. Synthesis of phosphorus containing polyol and its flame retardant modification in polyurethane foam[J]. Engineering Plastics Application, 2017, 45(2): 116-119, 123. | |
20 | 姜开森, 林晓琪, 陈维胜, 等. 聚氨酯泡沫用阻燃型多元醇的研究进展[J]. 首都师范大学学报(自然科学版), 2022, 43(2): 87-96. |
Jiang K S, Lin X Q, Chen W S, et al. Flame-retardant polyols for polyurethanes[J]. Journal of Capital Normal University (Natural Science Edition), 2022, 43(2): 87-96. | |
21 | 周逸潇, 杨丽, 毕成良, 等. 磷系阻燃剂的现状与展望[J]. 天津化工, 2009, 23(1): 1-4. |
Zhou Y X, Yang L, Bi C L, et al. Present situation and prospect of phosphorus flame retardants[J]. Tianjin Chemical Industry, 2009, 23(1): 1-4. | |
22 | Zhang H Y, Wang H Q, Wang H Q. Flame retardant mechanism and surface modification of magnesium hydroxide flame retardant[J]. IOP Conference Series: Earth and Environmental Science, 2018, 170: 032028. |
23 | 黄东, 南海, 吴鹤. 氢氧化铝的阻燃性质与应用研究[J]. 材料开发与应用, 2004, 19(3): 33-37. |
Huang D, Nan H, Wu H. Flame retardancy property and application of Al(OH)3 [J]. Development and Application of Materials, 2004, 19(3): 33-37. | |
24 | 胡兴胜, 郝建薇. 可膨胀石墨在硬质聚氨酯泡沫阻燃性能中的研究[J]. 塑料, 2004, 33(1): 45-47. |
Hu X S, Hao J W. Flame retardants study of expandable graphite in rigid polyurethane foams[J]. Plastics, 2004, 33(1): 45-47. | |
25 | 杨丰科, 任姗, 孟彩云. 含磷阻燃剂的应用研究进展[J]. 应用化工, 2010, 39(3): 424-426, 431. |
Yang F K, Ren S, Meng C Y. Research progress on phosphorus fire retardant[J]. Applied Chemical Industry, 2010, 39(3): 424-426, 431. | |
26 | Zhou F, Zhang T, Zou B, et al. Synthesis of a novel liquid phosphorus-containing flame retardant for flexible polyurethane foam: combustion behaviors and thermal properties[J]. Polymer Degradation and Stability, 2020, 171: 109029. |
27 | 覃善丽. 无卤阻燃剂的研究进展[J]. 大众科技, 2020, 22(6): 42-43, 62. |
Qin S L. Research progresses of halogen-free flame retardants[J]. Popular Science & Technology, 2020, 22(6): 42-43, 62. | |
28 | 张雪, 张园, 叶斐斐, 等. 磷系阻燃剂的发展及应用研究[J]. 工程塑料应用, 2015, 43(11): 112-117. |
Zhang X, Zhang Y, Ye F F, et al. Development and application research of phosphorus-containing flame retardant[J]. Engineering Plastics Application, 2015, 43(11): 112-117. | |
29 | Rao W H, Zhu Z M, Wang S X, et al. A reactive phosphorus-containing polyol incorporated into flexible polyurethane foam: self-extinguishing behavior and mechanism[J]. Polymer Degradation and Stability, 2018, 153: 192-200. |
30 | Acuña P, Zhang J, Yin G Z, et al. Bio-based rigid polyurethane foam from castor oil with excellent flame retardancy and high insulation capacity via cooperation with carbon-based materials[J]. Journal of Materials Science, 2021, 56(3): 2684-2701. |
[1] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[2] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[3] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[4] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[5] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[6] | 赵亚静, 胡激江, 介素云, 李伯耿. HTPB引入方式对不饱和树脂改性效果的影响[J]. 化工学报, 2023, 74(2): 883-892. |
[7] | 赵焕娟, 刘婧, 周冬雷, 林敏. 多孔材料对氢气爆轰的抑制作用[J]. 化工学报, 2023, 74(2): 968-976. |
[8] | 郑少杰, 王建斌, 胡激江, 李伯耿, 袁文博, 王宗, 姚臻. 单体组成切换法调控聚丙烯/丁烯合金的结构与性能[J]. 化工学报, 2023, 74(2): 904-915. |
[9] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[10] | 贾海林, 崔博, 陈南, 杨永钦, 王庆银, 朱福敏. 低碳醇改性无氟泡沫的性能分析与扑灭油池火的实验研究[J]. 化工学报, 2022, 73(9): 4235-4244. |
[11] | 唐恺鸿, 何晓峰, 徐桂秋, 于洋, 刘啸凤, 葛铁军, 张爱玲. 酚醛泡沫的燃烧行为及阻燃研究进展[J]. 化工学报, 2022, 73(8): 3483-3500. |
[12] | 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278. |
[13] | 王利霞, 毕肇杰, 史淼磊, 王晨, 王东方, 李倩. UHMWPE/PEG共混方式及配比对UHMWPE缠结行为及性能的影响[J]. 化工学报, 2022, 73(2): 933-940. |
[14] | 徐欢, 柯律, 张生辉, 张子林, 韩广东, 崔金声, 唐道远, 黄东辉, 高杰峰, 何新建. GO表面原位生长CNTs改善聚丙烯导热复合材料分散与界面形态[J]. 化工学报, 2022, 73(11): 5150-5157. |
[15] | 贾海林, 陈南, 焦振营, 程龙, 赵万里, 潘荣锟. 碳氢/有机硅/低碳醇三元系泡沫及抑制煤自燃的效果分析[J]. 化工学报, 2022, 73(1): 470-479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||