化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1409-1418.DOI: 10.11949/0438-1157.20221597
• 过程安全 • 上一篇
武子超1(), 汪志雷1(), 李荣业1, 李可昕1, 华敏1, 潘旭海1(), 王三明2, 蒋军成1
收稿日期:
2022-12-11
修回日期:
2023-01-14
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
汪志雷,潘旭海
作者简介:
武子超(1999—),男,硕士研究生,kk@njtech.edu.cn
基金资助:
Zichao WU1(), Zhilei WANG1(), Rongye LI1, Kexin LI1, Min HUA1, Xuhai PAN1(), Sanming WANG2, Juncheng JIANG1
Received:
2022-12-11
Revised:
2023-01-14
Online:
2023-03-05
Published:
2023-04-19
Contact:
Zhilei WANG, Xuhai PAN
摘要:
针对自燃点火与电火花点火对欠膨胀氢气射流燃爆超压的变化规律开展实验研究,测量了自燃和电火花两种点火方式在不同释放压力下的爆炸超压与火焰传播速率,分析了初始压力和点火条件对爆炸超压的影响机制。实验结果表明:相同释放条件下,自燃点火比电火花点火引发的管外爆炸超压峰值更高,压力上升速率更快,且自燃点火的发展过程更稳定;随着缓冲罐内释放压力从6 MPa升高到9 MPa,自燃管外爆炸超压峰值先升高后降低,在释放压力为8 MPa时自燃引发的爆炸超压达到最大值15.97 kPa,而电火花点火源处的燃爆超压随释放压力的上升从7.23 kPa先降低至3.17 kPa后升高到4.19 kPa;电火花点火火焰在点火源处形成了不规则形状点火核,同时火焰传播速度大于自燃火焰发展速度。本研究对于加氢站设计和燃爆风险评估具有参考意义。
中图分类号:
武子超, 汪志雷, 李荣业, 李可昕, 华敏, 潘旭海, 王三明, 蒋军成. 点火方式对欠膨胀氢气射流爆炸超压影响规律研究[J]. 化工学报, 2023, 74(3): 1409-1418.
Zichao WU, Zhilei WANG, Rongye LI, Kexin LI, Min HUA, Xuhai PAN, Sanming WANG, Juncheng JIANG. Study on the effect of ignition mode on overpressure of underexpanded hydrogen jet explosion[J]. CIESC Journal, 2023, 74(3): 1409-1418.
图9 8 MPa高压氢气释放时氢自燃和管外点火火焰速度对比
Fig.9 Comparison of flame speed between high-pressure hydrogen self-ignition and outside tube ignition at 8 MPa relief pressure
1 | 沈晓波, 章雪凝, 刘海峰. 高压氢气泄漏相关安全问题研究与进展[J]. 化工学报, 2021, 72(3): 1217-1229. |
Shen X B, Zhang X N, Liu H F. Research and progress on safety issues related to high-pressure hydrogen leakage[J]. CIESC Journal, 2021, 72(3): 1217-1229. | |
2 | 汪志雷, 潘旭海, 蒋军成. 高压氢气泄漏自燃研究进展[J]. 南京工业大学学报(自然科学版), 2019, 41(5): 656-663. |
Wang Z L, Pan X H, Jiang J C. Research challenges in high-pressure hydrogen spontaneous ignition[J]. Journal of Nanjing Tech University (Natural Science Edition), 2019, 41(5): 656-663. | |
3 | 郑立刚, 苏洋, 李刚, 等. 点火位置对氢气/甲烷/空气预混气体爆燃特性的影响[J]. 化工学报, 2017, 68(12): 4874-4881. |
Zheng L G, Su Y, Li G, et al. Effect of ignition position on deflagration characteristics of premixed hydrogen/methane/air[J]. CIESC Journal, 2017, 68(12): 4874-4881. | |
4 | Schefer R W, Houf W G, Williams T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007, 32(12): 2081-2093. |
5 | Xiao J, Travis J R, Breitung W. Hydrogen release from a high pressure gaseous hydrogen reservoir in case of a small leak[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2545-2554. |
6 | Ruggles A J, Ekoto I W. Ignitability and mixing of underexpanded hydrogen jets[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17549-17560. |
7 | 李雪芳, 王俞杰, 罗峰, 等. 欠膨胀氢气射流激波结构数值模拟研究[J]. 工程热物理学报, 2018, 39(4): 880-886. |
Li X F, Wang Y J, Luo F, et al. Numerical simulation of shock structures of under-expanded hydrogen jets[J]. Journal of Engineering Thermophysics, 2018, 39(4): 880-886. | |
8 | 李雪芳, 何倩, 柯道友, 等. 高压氢气小孔泄漏射流分层流动模型与验证[J]. 清华大学学报(自然科学版), 2018, 58(12): 1095-1100. |
Li X F, He Q, Christopher D M, et al. Validation of flow partitioning model for high pressure hydrogen jets through small orifices[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(12): 1095-1100. | |
9 | Houf W G, Evans G H, Schefer R W. Analysis of jet flames and unignited jets from unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5961-5969. |
10 | De Stefano M, Rocourt X, Sochet I, et al. Hydrogen dispersion in a closed environment[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9031-9040. |
11 | Astbury G R, Hawksworth S J. Spontaneous ignition of hydrogen leaks: a review of postulated mechanisms[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2178-2185. |
12 | Mogi T, Wada Y J, Ogata Y, et al. Self-ignition and flame propagation of high-pressure hydrogen jet during sudden discharge from a pipe[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5810-5816. |
13 | Mogi T, Kim D, Shiina H, et al. Self-ignition and explosion during discharge of high-pressure hydrogen[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2): 199-204. |
14 | Kitabayashi N, Wada Y, Mogi T, et al. Experimental study on high pressure hydrogen jets coming out of tubes of 0.1—4.2 m in length[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8100-8107. |
15 | 段强领. 高压氢气泄漏自燃机理及其火焰传播特性实验研究[D]. 合肥: 中国科学技术大学, 2016. |
Duan Q L. Experimental study of spontaneous ignition and subsequent flame propagation of high-pressure hydrogen release[D]. Hefei: University of Science and Technology of China, 2016. | |
16 | Xu B P, Wen J X, Dembele S, et al. The effect of pressure boundary rupture rate on spontaneous ignition of pressurized hydrogen release[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 279-287. |
17 | Xu B P, Wen J X. Numerical study of spontaneous ignition in pressurized hydrogen release through a length of tube with local contraction[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17571-17579. |
18 | Lee H J, Park J H, Kim S D, et al. Numerical study on the spontaneous-ignition features of high-pressure hydrogen released through a tube with burst conditions[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2173-2180. |
19 | Molkov V, Saffers J B. Hydrogen jet flames[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8141-8158. |
20 | 王振华, 蒋军成, 尤飞, 等. 高压氢气储运设施泄漏喷射火过程预测模型及其验证[J]. 化工学报, 2021, 72(10): 5412-5423. |
Wang Z H, Jiang J C, You F, et al. Prediction model for the process of jet fire induced by the leakage of high-pressure hydrogen storage and transportation facilities and its validation[J]. CIESC Journal, 2021, 72(10): 5412-5423. | |
21 | Royle M, Willoughby D B. Consequences of catastrophic releases of ignited and unignited hydrogen jet releases[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2688-2692. |
22 | Grune J, Sempert K, Kuznetsov M, et al. Experimental study of ignited unsteady hydrogen releases from a high pressure reservoir[J]. International Journal of Hydrogen Energy, 2014, 39(11): 6176-6183. |
23 | Daubech J, Hebrard J, Jallais S, et al. Un-ignited and ignited high pressure hydrogen releases: concentration - turbulence mapping and overpressure effects[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 439-446. |
24 | Friedrich A, Breitung W, Stern G, et al. Ignition and heat radiation of cryogenic hydrogen jets[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17589-17598. |
25 | Hall J E, Hooker P, Willoughby D. Ignited releases of liquid hydrogen: safety considerations of thermal and overpressure effects[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20547-20553. |
26 | Molkov V, Kashkarov S. Blast wave from a high-pressure gas tank rupture in a fire: stand-alone and under-vehicle hydrogen tanks[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12581-12603. |
27 | Pan X H, Wang Q Y, Yan W Y, et al. Experimental study on pressure dynamics and self-ignition of pressurized hydrogen flowing into the L-shaped tubes[J]. International Journal of Hydrogen Energy, 2020, 45(7): 5028-5038. |
28 | Pan X H, Yan W Y, Jiang Y M, et al. Experimental investigation of the self-ignition and jet flame of hydrogen jets released under different conditions[J]. ACS Omega, 2019, 4(7): 12004-12011. |
29 | Wang Z L, Pan X H, Wang Q Y, et al. Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release through tubes[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22584-22597. |
30 | 闫伟阳, 潘旭海, 汪志雷, 等. 高压氢气泄漏自燃形成喷射火的实验研究[J]. 爆炸与冲击, 2019, 39(11): 134-143. |
Yan W Y, Pan X H, Wang Z L, et al. Experimental investigation on spontaneous combustion of high-pressure hydrogen leakage to form jet fire[J]. Explosion and Shock Waves, 2019, 39(11): 134-143. | |
31 | Jiang Y M, Pan X H, Yan W Y, et al. Pressure dynamics, self-ignition, and flame propagation of hydrogen jet discharged under high pressure[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22661-22670. |
32 | Wang Z L, Zhang H, Pan X H, et al. Experimental and numerical study on the high-pressure hydrogen jet and explosion induced by sudden released into the air through tubes[J]. International Journal of Hydrogen Energy, 2020, 45(7): 5086-5097. |
33 | Ta L, Wang Z L, Zhang B, et al. Experimental investigation on shock wave propagation and self-ignition of pressurized hydrogen in different three-way tubes[J]. Process Safety and Environmental Protection, 2022, 160: 139-152. |
34 | Zhang T, Jiang Y M, Pan X H, et al. Effects of tubes with different inlet shapes on the shock wave and self-ignition induced by accidental release of pressurized hydrogen[J]. Fuel, 2022, 317: 123554. |
35 | Jiang Y M, Pan X H, Hua M, et al. Non-premixed flame propagation inside and outside the different three-way tubes after the self-ignition of pressurized hydrogen[J]. Process Safety and Environmental Protection, 2022, 165: 102-113. |
36 | Li Y Y, Jiang Y M, Pan X H, et al. Effects of the arc-shaped corner on the shock wave and self-ignition induced by sudden release of pressurized hydrogen[J]. Fuel, 2021, 303: 121294. |
37 | Jiang Y M, Pan X H, Cai Q, et al. Physics and flame morphology of supersonic spontaneously combusting hydrogen spouting into air[J]. Renewable Energy, 2022, 196: 959-972. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[5] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[6] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[7] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[8] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 杨克, 贾岳, 纪虹, 邢志祥, 蒋军成. 垃圾焚烧飞灰对瓦斯爆炸压力及火焰传播的抑制作用及机理研究[J]. 化工学报, 2023, 74(8): 3597-3607. |
[11] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[12] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[13] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[14] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[15] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||