1 |
Zdankus T, Gylys M, Paukstaitis L, et al. Experimental investigation of heat transfer from a horizontal flat surface to aqueous foam flow[J]. International Journal of Heat and Mass Transfer, 2018, 123: 489-499.
|
2 |
Hill C, Eastoe J. Foams: from nature to industry[J]. Advances in Colloid and Interface Science, 2017, 247: 496-513.
|
3 |
Gao H, Zhang M, Xia J J, et al. Time and surfactant types dependent model of foams based on the Herschel-Bulkley model[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509: 203-213.
|
4 |
Magrabi S A, Dlugogorski B Z, Jameson G J. A comparative study of drainage characteristics in AFFF and FFFP compressed-air fire-fighting foams[J]. Fire Safety Journal, 2002, 37(1): 21-52.
|
5 |
Muin S R, Rabbani A, Bournival G, et al. Utilization of microcomputed tomography and pore network modeling to characterize foam dynamics[J]. Chemical Engineering Science, 2021, 230: 116174.
|
6 |
Langevin D. Aqueous foams and foam films stabilised by surfactants. Gravity-free studies[J]. Comptes Rendus Mécanique, 2017, 345(1): 47-55.
|
7 |
Lattimer B Y, Hanauska C P, Scheffey J L, et al. The use of small-scale test data to characterize some aspects of fire fighting foam for suppression modeling[J]. Fire Safety Journal, 2003, 38(2): 117-146.
|
8 |
Petkova B, Tcholakova S, Chenkova M, et al. Foamability of aqueous solutions: role of surfactant type and concentration[J]. Advances in Colloid and Interface Science, 2020, 276: 102084.
|
9 |
Yake A, Corder T, Moloy K, et al. Fluorinated pyridinium and ammonium cationic surfactants[J]. Journal of Fluorine Chemistry, 2016, 187: 46-55.
|
10 |
安娜, 乔建江. 高效抗溶型泡沫灭火剂的研究[J]. 华东理工大学学报(自然科学版), 2018, 44(1): 75-81.
|
|
An N, Qiao J J. Study of high performance alcohol-resistance foam extinguishing agent[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2018, 44(1): 75-81.
|
11 |
Lv Q, Li Z M, Li B F, et al. Synergistic mechanism of particulate matter (PM) from coal combustion and saponin from camellia seed pomace in stabilizing CO2 foam[J]. Energy & Fuels, 2018, 32(3): 3733-3742.
|
12 |
Marinova K G, Naydenova K T, Basheva E S, et al. New surfactant mixtures for fine foams with slowed drainage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 523: 54-61.
|
13 |
Vinogradov A V, Kuprin D S, Abduragimov I M, et al. Silica foams for fire prevention and firefighting[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 294-301.
|
14 |
王德明. 矿井防灭火新技术: 三相泡沫[J]. 煤矿安全, 2004, 35(7): 16-18.
|
|
Wang D M. A novel technology of mine fire fighting—three‒phase foam [J]. Safety in Coal Mines, 2004, 35(7): 16-18.
|
15 |
Zhou F B, Ren W X, Wang D M, et al. Application of three-phase foam to fight an extraordinarily serious coal mine fire[J]. International Journal of Coal Geology, 2006, 67(1/2): 95-100.
|
16 |
张钧祥, 宋维宾, 孙玉宁, 等. 新型高分子泡沫堵漏材料试验研究及工程应用[J]. 煤炭学报, 2018, 43(S1): 158-166.
|
|
Zhang J X, Song W B, Sun Y N, et al. Experimental study and application of new polymer foam plugging material[J]. Journal of China Coal Society, 2018, 43(S1): 158-166.
|
17 |
鲁义, 王涛, 田兆君, 等. 水泥基泡沫形成机理及抑制煤堆自燃试验研究[J]. 中国安全生产科学技术, 2017, 13(7): 87-91.
|
|
Lu Y, Wang T, Tian Z J, et al. Test study on formation mechanism of cement-based foam and inhibition for spontaneous combustion of coal pile[J]. Journal of Safety Science and Technology, 2017, 13(7): 87-91.
|
18 |
蒋新生, 吕科宗, 魏树旺, 等. 基于响应曲面法的三相泡沫灭火剂基础配方优化设计[J]. 化工学报, 2017, 68(7): 2886-2895.
|
|
Jiang X S, Lyu K Z, Wei S W, et al. Optimal design of three phase fire-fighting foam formulation based on response surface methodology[J]. CIESC Journal, 2017, 68(7): 2886-2895.
|
19 |
盛友杰. 碳氢和有机硅表面活性剂复配体系为基剂的泡沫灭火剂研究[D]. 合肥: 中国科学技术大学, 2018.
|
|
Sheng Y J. Investigation on fire-fighting foam based on mixture of hydrocarbon and silicone surfactants[D]. Hefei: University of Science and Technology of China, 2018.
|
20 |
王彦玲, 郑晶晶, 赵修太, 等. 低碳醇对氟碳与碳氢表面活性剂复配体系泡沫性能的影响[J]. 化工学报, 2010, 61(5): 1202-1207.
|
|
Wang Y L, Zheng J J, Zhao X T, et al. Effect of low carbon alcohols on foaming properties of fluorocarbon and hydrocarbon surfactant mixed system[J]. CIESC Journal, 2010, 61(5): 1202-1207.
|
21 |
张华海, 王悦琳, 王铁峰. 全浓度范围下醇类表面活性剂对气泡聚并影响的实验研究[J]. 化工学报, 2020, 71(9): 4161-4167.
|
|
Zhang H H, Wang Y L, Wang T F. Experimental study on effect of alcohol surfactants on bubble coalescence in full range of concentrations[J]. CIESC Journal, 2020, 71(9): 4161-4167.
|
22 |
易欣, 白祖锦, 肖旸, 等. 咪唑类离子液体对煤自燃极限参数的影响[J]. 安全与环境学报, 2018, 18(5): 1805-1810.
|
|
Yi X, Bai Z J, Xiao Y, et al. Impact of imidazole ionic liquid on the maximal limit parameters of the coal spontaneous combustion[J]. Journal of Safety and Environment, 2018, 18(5): 1805-1810.
|
23 |
肖旸, 吕慧菲, 任帅京, 等. 咪唑类离子液体抑制煤自燃特性的研究[J]. 中国矿业大学学报, 2019, 48(1): 175-181.
|
|
Xiao Y, Lyu H F, Ren S J, et al. Inhibition properties of imidazolium-based ionic liquids on coal spontaneous combustion[J]. Journal of China University of Mining & Technology, 2019, 48(1): 175-181.
|
24 |
Xi X, Shi Q L. Study of the preparation and extinguishment characteristic of the novel high-water-retaining foam for controlling spontaneous combustion of coal[J]. Fuel, 2021, 288: 119354.
|
25 |
娄和壮, 贾廷贵. TG-DSC联用研究瓦斯气氛对煤自燃热特性的影响[J]. 中国安全科学学报, 2019, 29(11): 77-82.
|
|
Lou H Z, Jia T G. Study on thermal characteristics of coal spontaneous combustion in gas atmosphere by TG-DSC coupling techniques[J]. China Safety Science Journal, 2019, 29(11): 77-82.
|
26 |
尤飞, 皇甫文豪, 王振华, 等. 基于热重分析的煤升温氧化及煤氧复合特性分析[J]. 安全与环境学报, 2018, 18(4): 1312-1315.
|
|
You F, Huangfu W H, Wang Z H, et al. Analytic investigation of the coal self-combustion and oxidation characteristic features based on the thermogravimetric analysis[J]. Journal of Safety and Environment, 2018, 18(4): 1312-1315.
|
27 |
刘倩, 钟文琪, 苏伟, 等. 基于热重-质谱联用的煤粉富氧燃烧动力学及污染物生成特性[J]. 化工学报, 2018, 69(1): 523-530.
|
|
Liu Q, Zhong W Q, Su W, et al. Oxy-coal combustion kinetics and formation characteristics of pollutants based on TG-MS analysis[J]. CIESC Journal, 2018, 69(1): 523-530.
|
28 |
王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020, 45(12): 4132-4143.
|
|
Wang J, Zhang Y L, Wang J F, et al. Synergistic inhibition effect of inorganic salt inhibitor and free radical scavenger on coal spontaneous combustion[J]. Journal of China Coal Society, 2020, 45(12): 4132-4143.
|
29 |
莫春兰, 莫益涛, 陈俊红, 等. 柴油机SCR系统尿素的热分解过程研究[J]. 燃烧科学与技术, 2021, 27(1): 16-22.
|
|
Mo C L, Mo Y T, Chen J H, et al. Thermal decomposition process of urea in SCR system for diesel engine[J]. Journal of Combustion Science and Technology, 2021, 27(1): 16-22.
|
30 |
Chen L Z, Qi X Y, Tang J, et al. Reaction pathways and cyclic chain model of free radicals during coal spontaneous combustion[J]. Fuel, 2021, 293: 120436.
|