化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1390-1398.DOI: 10.11949/0438-1157.20221365
王锋1,2(), 陈钰2, 裴鸿艳2, 刘东东1,2, 张静1,2(), 张立新1,2()
收稿日期:
2022-10-17
修回日期:
2022-12-17
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
张静,张立新
作者简介:
王锋(1991—),男,博士研究生,445765487@qq.com
基金资助:
Feng WANG1,2(), Yu CHEN2, Hongyan PEI2, Dongdong LIU1,2, Jing ZHANG1,2(), Lixin ZHANG1,2()
Received:
2022-10-17
Revised:
2022-12-17
Online:
2023-03-05
Published:
2023-04-19
Contact:
Jing ZHANG, Lixin ZHANG
摘要:
大豆锈病是危害大豆生产的主要真菌病害。为了研发新型高效的杀菌剂,以N-(4-(5-(三氟甲基)-1,2,4-𫫇二唑-3-基)苯基)环丙甲酰胺为先导化合物,采用结构修饰的方法,引入新的取代基,以此设计了12个新型1,2,4-𫫇二唑类衍生物,通过肟化、合环、还原及缩合反应,合成得到,经1H NMR和ESI-MS确证化学结构。测试了它们对大豆锈病的抗菌活性:当质量浓度为3.125 mg/L时,化合物5b、5d、6a、6e和6g对大豆锈病的抑制率分别为60%、65%、100%、98%和95%,优于对照药剂苯醚甲环唑(50%);化合物6a抗菌活性优异,当质量浓度为0.39125 mg/L时,对大豆锈病仍有90%抑制率。分子对接的结果说明,化合物6a与组蛋白去乙酰化酶4(HDAC 4)和组蛋白去乙酰化酶7(HDAC 7)有着多种相互作用。
中图分类号:
王锋, 陈钰, 裴鸿艳, 刘东东, 张静, 张立新. 1,2,4-𫫇二唑类衍生物的设计、合成及抗菌活性[J]. 化工学报, 2023, 74(3): 1390-1398.
Feng WANG, Yu CHEN, Hongyan PEI, Dongdong LIU, Jing ZHANG, Lixin ZHANG. Design, synthesis and anti-fungal activity of 1,2,4-oxadiazole derivatives[J]. CIESC Journal, 2023, 74(3): 1390-1398.
Compound | Reaction time/h | Feature | Melting point/℃ | Yield/% | m/z (calcd.)① |
---|---|---|---|---|---|
5a | 4.0 | white solid | 185.2—185.9 | 75.65 | 340.1(340.1) |
5b | 4.0 | white solid | 188.2—189.0 | 78.25 | 354.1(354.1) |
5c | 3.5 | yellow solid | 184.6—185.2 | 76.52 | 368.1(368.1) |
5d | 5.0 | yellow oil | — | 70.26 | 352.2(352.1) |
5e | 5.0 | white solid | 189.6—190.1 | 72.24 | 370.1(370.1) |
表1 化合物5a~5e的理化数据和质谱(ESI-MS)表征结果
Table 1 Physical data and ESI-MS results of compounds 5a—5e
Compound | Reaction time/h | Feature | Melting point/℃ | Yield/% | m/z (calcd.)① |
---|---|---|---|---|---|
5a | 4.0 | white solid | 185.2—185.9 | 75.65 | 340.1(340.1) |
5b | 4.0 | white solid | 188.2—189.0 | 78.25 | 354.1(354.1) |
5c | 3.5 | yellow solid | 184.6—185.2 | 76.52 | 368.1(368.1) |
5d | 5.0 | yellow oil | — | 70.26 | 352.2(352.1) |
5e | 5.0 | white solid | 189.6—190.1 | 72.24 | 370.1(370.1) |
Compound | |
---|---|
5a | 8.23 (d, J = 8.5 Hz, 2H, Ph-2H), 7.39 (d, J = 8.5 Hz, 2H, Ph-2H), 2.51 (s, 3H, CH3), 1.63—1.59 (m, 1H, CH), 1.18—1.11 (m, 2H, half-CH2CH2), 0.86—0.83 (m, 2H, half-CH2CH2) |
5b | 8.23 (d, J = 8.5 Hz, 2H, Ph-2H), 7.38 (d, J = 8.5 Hz, 2H, Ph-2H), 2.80 (q, J = 7.3 Hz, 2H, CH2), 1.75—1.71 (m, 1H, CH), 1.17 (t, J = 7.3 Hz, 3H, CH3), 1.15—1.12 (m, 2H, half-CH2CH2), 0.87—0.84 (m, 2H, half-CH2CH2) |
5c | 8.22 (d, J = 8.4 Hz, 2H, Ph-2H), 7.36 (d, J = 8.5 Hz, 2H, Ph-2H), 3.35—3.30 (m, 1H, CH), 1.74—1.70 (m, 1H, CH), 1.21[d, J = 6.8 Hz, 6H, (CH3)2], 1.17—1.14 (m, 2H, half-CH2CH2), 0.88—0.85 (m, 2H, half-CH2CH2) |
5d | 8.23 (d, J = 8.4 Hz, 2H, Ph-2H), 7.39 (d, J = 8.5 Hz, 2H, Ph-2H), 6.63 (dd, J = 16.8, 10.3 Hz, 1H, =CH), 6.48 (dd, J = 16.8, 1.6 Hz, 1H, CH), 5.78 (dd, J = 10.3, 1.6 Hz, 1H, =CH), 1.93—1.89 (m, 1H, CH), 1.21—1.18 (m, 2H, half-CH2CH2), 0.94—0.91 (m, 2H, half-CH2CH2) |
5e | 8.17 (d, J = 8.5 Hz, 2H, Ph-2H), 7.30 (d, J = 8.5 Hz, 2H, Ph-2H), 4.23 (q, J = 7.1 Hz, 2H, CH2), 2.83—2.78 (m, 1H, CH), 1.20 (t, J = 7.1 Hz, 3H, CH3), 1.19—1.16 (m, 2H, half-CH2CH2), 1.02—0.99 (m, 2H, half-CH2CH2) |
表2 化合物5a~5e的核磁共振氢谱(1H NMR)的数据
Table 2 1H NMR data of compounds 5a—5e
Compound | |
---|---|
5a | 8.23 (d, J = 8.5 Hz, 2H, Ph-2H), 7.39 (d, J = 8.5 Hz, 2H, Ph-2H), 2.51 (s, 3H, CH3), 1.63—1.59 (m, 1H, CH), 1.18—1.11 (m, 2H, half-CH2CH2), 0.86—0.83 (m, 2H, half-CH2CH2) |
5b | 8.23 (d, J = 8.5 Hz, 2H, Ph-2H), 7.38 (d, J = 8.5 Hz, 2H, Ph-2H), 2.80 (q, J = 7.3 Hz, 2H, CH2), 1.75—1.71 (m, 1H, CH), 1.17 (t, J = 7.3 Hz, 3H, CH3), 1.15—1.12 (m, 2H, half-CH2CH2), 0.87—0.84 (m, 2H, half-CH2CH2) |
5c | 8.22 (d, J = 8.4 Hz, 2H, Ph-2H), 7.36 (d, J = 8.5 Hz, 2H, Ph-2H), 3.35—3.30 (m, 1H, CH), 1.74—1.70 (m, 1H, CH), 1.21[d, J = 6.8 Hz, 6H, (CH3)2], 1.17—1.14 (m, 2H, half-CH2CH2), 0.88—0.85 (m, 2H, half-CH2CH2) |
5d | 8.23 (d, J = 8.4 Hz, 2H, Ph-2H), 7.39 (d, J = 8.5 Hz, 2H, Ph-2H), 6.63 (dd, J = 16.8, 10.3 Hz, 1H, =CH), 6.48 (dd, J = 16.8, 1.6 Hz, 1H, CH), 5.78 (dd, J = 10.3, 1.6 Hz, 1H, =CH), 1.93—1.89 (m, 1H, CH), 1.21—1.18 (m, 2H, half-CH2CH2), 0.94—0.91 (m, 2H, half-CH2CH2) |
5e | 8.17 (d, J = 8.5 Hz, 2H, Ph-2H), 7.30 (d, J = 8.5 Hz, 2H, Ph-2H), 4.23 (q, J = 7.1 Hz, 2H, CH2), 2.83—2.78 (m, 1H, CH), 1.20 (t, J = 7.1 Hz, 3H, CH3), 1.19—1.16 (m, 2H, half-CH2CH2), 1.02—0.99 (m, 2H, half-CH2CH2) |
Compound | Reaction time/h | Feature | Melting point/℃ | Yield/% | m/z (calcd.) |
---|---|---|---|---|---|
6a | 4.0 | white solid | 185.2—185.6 | 80.45 | 365.2(365.1) |
6b | 5.0 | white solid | 190.5—191.2 | 80.25 | 338.4(338.1) |
6c | 4.0 | yellow solid | 162.6—163.7 | 90.84 | 360.3(360.1) |
6d | 5.0 | white solid | 184.2—185.2 | 84.52 | 380.3(380.1) |
6e | 5.0 | white solid | 183.5—184.2 | 73.69 | 384.2(384.1) |
6f | 5.0 | white solid | 195.2—195.8 | 80.42 | 380.2(380.1) |
6g | 5.0 | white solid | 248.6—249.0 | 70.35 | 384.1(384.1) |
表3 化合物6a~6g的理化数据和质谱(ESI-MS)表征结果
Table 3 Physical data and ESI-MS results of compounds 6a—6g
Compound | Reaction time/h | Feature | Melting point/℃ | Yield/% | m/z (calcd.) |
---|---|---|---|---|---|
6a | 4.0 | white solid | 185.2—185.6 | 80.45 | 365.2(365.1) |
6b | 5.0 | white solid | 190.5—191.2 | 80.25 | 338.4(338.1) |
6c | 4.0 | yellow solid | 162.6—163.7 | 90.84 | 360.3(360.1) |
6d | 5.0 | white solid | 184.2—185.2 | 84.52 | 380.3(380.1) |
6e | 5.0 | white solid | 183.5—184.2 | 73.69 | 384.2(384.1) |
6f | 5.0 | white solid | 195.2—195.8 | 80.42 | 380.2(380.1) |
6g | 5.0 | white solid | 248.6—249.0 | 70.35 | 384.1(384.1) |
Compound | |
---|---|
6a | 8.22 (d, J = 8.4 Hz, 2H, Ph-2H), 7.41 (d, J = 8.4 Hz, 2H, Ph-2H), 2.09—2.05 (m, 2H, CH), 1.21—1.16 [m, 4H, 2(half-CH2CH2)], 0.94—0.91 [m, 4H, 2(half-CH2CH2)] |
6b | 8.24 (d, J = 8.5 Hz, 2H, Ph-2H), 7.34 (d, J = 8.5 Hz, 2H, Ph-2H), 6.56—6.47 (m, 4H, =CH2), 5.80 (t, J = 5.9 Hz, 2H, =CH) |
6c | 8.27 (d, J = 8.3 Hz, 2H, Ph-2H), 8.00 (dd, J = 5.4, 3.1 Hz, 2H, Ph-2H), 7.84 (dd, J = 5.5, 3.1 Hz, 2H, Ph-2H), 7.70 (d, J = 8.3 Hz, 2H, Ph-2H) |
6d | 8.15 (d, J = 8.0 Hz, 1H, Ph-H), 7.24 (d, J = 8.6 Hz, 2H, Ph-2H), 2.69 (s, 3H, CH3), 2.10—2.06 (m, 2H, CH), 1.20—1.15 [m, 4H, 2(half-CH2CH2)], 0.93—0.90 [m, 4H, 2(half-CH2CH2)] |
6e | 8.19 (t, J = 7.9 Hz, 1H, Ph-H), 7.26—7.20 (m, 2H, Ph-2H), 2.09—2.05 (m, 2H, CH), 1.21—1.18 [m, 4H, 2(half-CH2CH2)], 0.97—0.94 [m, 4H, 2(half-CH2CH2)] |
6f | 8.11—8.08 (m, 1H, Ph-H), 8.04 (dd, J = 8.1, 2.0 Hz, 1H, Ph-H), 7.34 (d, J = 8.1 Hz, 1H, Ph-H), 2.31 (s, 3H, CH3), 2.10—2.06 (m, 2H, CH), 1.21—1.12 [m, 4H, 2(half-CH2CH2)], 0.94—0.87 [m, 4H, 2(half-CH2CH2)] |
6g | 8.02 (d, J = 8.2 Hz, 1H, Ph-H), 7.98 (d, J = 9.5 Hz, 1H, Ph-H), 7.45 (t, J = 7.8 Hz, 1H, Ph-H), 2.13—2.10 (m, 2H, CH), 1.22—1.19 [m, 4H, 2(half-CH2CH2)], 0.96—0.93 [m, 4H, 2(half-CH2CH2)]. |
表4 化合物6a~6g的核磁共振氢谱(1H NMR)的数据
Table 4 1H NMR data of compounds 6a—6g
Compound | |
---|---|
6a | 8.22 (d, J = 8.4 Hz, 2H, Ph-2H), 7.41 (d, J = 8.4 Hz, 2H, Ph-2H), 2.09—2.05 (m, 2H, CH), 1.21—1.16 [m, 4H, 2(half-CH2CH2)], 0.94—0.91 [m, 4H, 2(half-CH2CH2)] |
6b | 8.24 (d, J = 8.5 Hz, 2H, Ph-2H), 7.34 (d, J = 8.5 Hz, 2H, Ph-2H), 6.56—6.47 (m, 4H, =CH2), 5.80 (t, J = 5.9 Hz, 2H, =CH) |
6c | 8.27 (d, J = 8.3 Hz, 2H, Ph-2H), 8.00 (dd, J = 5.4, 3.1 Hz, 2H, Ph-2H), 7.84 (dd, J = 5.5, 3.1 Hz, 2H, Ph-2H), 7.70 (d, J = 8.3 Hz, 2H, Ph-2H) |
6d | 8.15 (d, J = 8.0 Hz, 1H, Ph-H), 7.24 (d, J = 8.6 Hz, 2H, Ph-2H), 2.69 (s, 3H, CH3), 2.10—2.06 (m, 2H, CH), 1.20—1.15 [m, 4H, 2(half-CH2CH2)], 0.93—0.90 [m, 4H, 2(half-CH2CH2)] |
6e | 8.19 (t, J = 7.9 Hz, 1H, Ph-H), 7.26—7.20 (m, 2H, Ph-2H), 2.09—2.05 (m, 2H, CH), 1.21—1.18 [m, 4H, 2(half-CH2CH2)], 0.97—0.94 [m, 4H, 2(half-CH2CH2)] |
6f | 8.11—8.08 (m, 1H, Ph-H), 8.04 (dd, J = 8.1, 2.0 Hz, 1H, Ph-H), 7.34 (d, J = 8.1 Hz, 1H, Ph-H), 2.31 (s, 3H, CH3), 2.10—2.06 (m, 2H, CH), 1.21—1.12 [m, 4H, 2(half-CH2CH2)], 0.94—0.87 [m, 4H, 2(half-CH2CH2)] |
6g | 8.02 (d, J = 8.2 Hz, 1H, Ph-H), 7.98 (d, J = 9.5 Hz, 1H, Ph-H), 7.45 (t, J = 7.8 Hz, 1H, Ph-H), 2.13—2.10 (m, 2H, CH), 1.22—1.19 [m, 4H, 2(half-CH2CH2)], 0.96—0.93 [m, 4H, 2(half-CH2CH2)]. |
目标化合物 | 抑制率/% | ||||
---|---|---|---|---|---|
6.25 mg/L | 3.125 mg/L | 1.5625 mg/L | 0.7825 mg/L | 0.39125 mg/L | |
5a | 75 | 30 | 0 | — | — |
5b | 98 | 60 | 35 | — | — |
5c | 0 | 0 | 0 | — | — |
5d | 85 | 65 | 30 | — | — |
5e | 85 | 50 | 10 | — | — |
6a | 100 | 100 | 99 | 93 | 90 |
6b | 20 | 15 | 0 | — | — |
6c | 50 | 20 | 0 | — | — |
6d | 30 | 0 | 0 | — | — |
6e | 100 | 98 | 60 | — | — |
6f | 78 | 45 | 20 | — | — |
6g | 100 | 95 | 50 | — | — |
苯醚甲环唑 | 95 | 50 | 15 | — | — |
嘧菌酯 | 100 | 100 | 100 | 100 | 98 |
表5 目标化合物对大豆锈病的抗菌活性
Table 5 Anti-fungal activity against soybean rust by target compounds
目标化合物 | 抑制率/% | ||||
---|---|---|---|---|---|
6.25 mg/L | 3.125 mg/L | 1.5625 mg/L | 0.7825 mg/L | 0.39125 mg/L | |
5a | 75 | 30 | 0 | — | — |
5b | 98 | 60 | 35 | — | — |
5c | 0 | 0 | 0 | — | — |
5d | 85 | 65 | 30 | — | — |
5e | 85 | 50 | 10 | — | — |
6a | 100 | 100 | 99 | 93 | 90 |
6b | 20 | 15 | 0 | — | — |
6c | 50 | 20 | 0 | — | — |
6d | 30 | 0 | 0 | — | — |
6e | 100 | 98 | 60 | — | — |
6f | 78 | 45 | 20 | — | — |
6g | 100 | 95 | 50 | — | — |
苯醚甲环唑 | 95 | 50 | 15 | — | — |
嘧菌酯 | 100 | 100 | 100 | 100 | 98 |
目标化合物 | IC50/(mg/L) | 毒力回归方程 | R |
---|---|---|---|
5a | 4.265 | y = 1.2457x - 0.2664 | 0.9910 |
5b | 2.251 | y = 1.0464x + 0.1255 | 0.9375 |
5d | 2.363 | y = 0.9135x + 0.1479 | 0.9952 |
5e | 3.197 | y = 1.2457x - 0.1331 | 0.9968 |
6c | 6.174 | y = 0.8305x - 0.1776 | 0.9808 |
6e | 1.442 | y = 0.8372x - 0.2205 | 0.9999 |
6f | 3.352 | y = 0.9634x - 0.0001 | 0.9966 |
6g | 1.563 | y = 0.6727x - 0.1391 | 0.9998 |
苯醚甲环唑 | 3.125 | y = 1.3288x - 0.1242 | 0.9916 |
表6 部分化合物对大豆锈病的IC50值
Table 6 IC50 values of some compounds against soybean rust
目标化合物 | IC50/(mg/L) | 毒力回归方程 | R |
---|---|---|---|
5a | 4.265 | y = 1.2457x - 0.2664 | 0.9910 |
5b | 2.251 | y = 1.0464x + 0.1255 | 0.9375 |
5d | 2.363 | y = 0.9135x + 0.1479 | 0.9952 |
5e | 3.197 | y = 1.2457x - 0.1331 | 0.9968 |
6c | 6.174 | y = 0.8305x - 0.1776 | 0.9808 |
6e | 1.442 | y = 0.8372x - 0.2205 | 0.9999 |
6f | 3.352 | y = 0.9634x - 0.0001 | 0.9966 |
6g | 1.563 | y = 0.6727x - 0.1391 | 0.9998 |
苯醚甲环唑 | 3.125 | y = 1.3288x - 0.1242 | 0.9916 |
1 | Li D D, Zhang S S, Song Z H, et al. Bioactivity-guided mixed synthesis accelerate the serendipity in lead optimization: discovery of fungicidal homodrimanyl amides[J]. Eur. J. Med. Chem., 2017, 136: 114-121. |
2 | Wang L L, Li C, Zhang Y Y, et al. Synthesis and biological evaluation of benzofuroxan derivatives as fungicides against phytopathogenic fungi[J]. J. Agr. Food. Chem., 2013, 61(36): 8632-8640. |
3 | Price C L, Parker J E, Warrilow A G S, et al. Azole fungicides— understanding resistance mechanisms in agricultural fungal pathogens[J]. Pest. Manag. Sci., 2015, 71(8): 1054-1058. |
4 | 李琼, 张晓明. 病虫害对5个大豆主产国大豆产量影响的概述[J]. 农学学报, 2018, 8(4): 23-27. |
Li Q, Zhang X M. Effect of diseases and insect pests on soybean yield in the top five soybean producing countries: a review [J]. Journal of Agriculture, 2018, 8(4): 23-27. | |
5 | Phillips McDougall AgriServicer, Inc. Crops Section 2017 Market[EB/OL]. [2019-02-06]. . |
6 | 刘梦竹, 裴鸿艳, 张静, 等. 大豆锈病防治药剂研究进展[J]. 现代农药, 2020, 19(6): 11-21. |
Liu M Z, Pei H Y, Zhang J, et al. Research progress of fungicides for soybean rust[J]. Modern Agrochemicals, 2020, 19(6): 11-21. | |
7 | Stimson L, Wood V, Khan O, et al. HDAC inhibitor-based therapies and haematological malignancy[J]. Ann. Oncol., 2009, 20(8): 1293-1302. |
8 | 张琳. CDKs/HDACs双靶点抑制剂T-17的抗肿瘤药效学研究[D]. 重庆: 重庆医科大学, 2021. |
Zhang L. The anticancer pharmacodynamics of the T-17, a dual target inhibitor of CDKs and HDACs[D]. Chongqing: Chongqing Medical University, 2021. | |
9 | Winter C, Fehr M. Discovery of the trifluoromethyloxadiazoles—a new class of fungicides with a novel mode-of-action[M]// Recent Highlights in the Discovery and Optimization of Crop Protection Products. Amsterdam: Elsevier, 2021: 401-423. |
10 | Khan I, Ibrar A, Abbas N, et al. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multifarious applications[J]. Eur. J. Med.Chem., 2014, 76: 193-244. |
11 | Fan Z J, Shi J, Bao X P. Synthesis and antimicrobial evaluation of novel 1,2,4-triazole thioether derivatives bearing a quinazoline moiety[J]. Mol. Divers., 2018, 22: 657-667. |
12 | 刘瑶, 李珊, 裘旎, 等. 3-芳基-5-吡唑基-1,2,4-𫫇二唑类HIF-1抑制剂的结构优化与构效关系研究[J]. 中国现代应用药学, 2021, 38(10): 1153-1160. |
Liu Y, Li S, Qiu N, et al. Structural modification and SAR study of 3-aryl-5-pyrazol-1,2,4-oxadiazole derivatives as HlF-1 inhibitor[J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(10): 1153-1160. | |
13 | Eleutherakis-papaiakovou E, Kanellias N, Kastritis E, et al. Efficacy of panobinostat for the treatment of multiple myeloma[J]. J. Oncol., 2020, 2020: 7131802. |
14 | Nazir M, Abbasi M A, Rehman A, et al. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: as potent anti-diabetic agents[J]. Bioorg. Chem., 2018, 81: 253-263. |
15 | 崔建国,庞丽萍,刘畅, 等. 某些具有吡唑和1,2,4-二唑支链的杂环甾体化合物的合成、表征及抗肿瘤活性评价(英文)[J]. 化学试剂, 2018, 40(7): 612-622. |
Cui J G, Pang L P, Liu C, et al. Synthesis,characterization and antiproliferative evaluation of some heterosteroids possessing side chain of pyrazoles or 1,2,4-oxadiazoles[J]. Chemical Reagents, 2018, 40(7): 612-622. | |
16 | 刘斌, 徐小娜, 朱周静, 等. N-[2,6-二氯-4-(1,2,4-𫫇二唑-3-基)苯基]-2-甲氧基烟酰胺的合成、晶体结构及抗肿瘤活性研究[J]. 化学通报, 2021, 84(4): 383-387, 399, 289. |
Liu B, Xu X N, Zhu Z J, et al. Synthesis,crystal structure and antitumor activity of N-(2,6-dichloro-4-(1,2,4-oxadiazol-3-yl) phenyl)-2-methoxynicotinamide[J]. Chem. Bull., 2021, 84(4): 383-387, 399, 289. | |
17 | 章乐天, 苏嘉媛, 徐晓勇. 作为杀菌和杀虫先导的1,2,4-𫫇二嗪衍生物的设计与合成研究[J]. 有机化学, 2021, 41(9): 3539-3549. |
Zhang L T, Su J Y, Xu X Y. Design and synthesis of 1,2,4-oxadiazine derivatives as promising fungicide and insecticide lead compound[J]. Chin. J. Org. Chem., 2021, 41(9): 3539-3549. | |
18 | 朱灵志. 含1,3,4-𫫇(噻)二唑或吡啶结构的1,2,4-𫫇二唑衍生物的设计合成及生物活性研究[D]. 贵阳: 贵州大学, 2021. |
Zhu L Z. Design, synthesis and biological activity of 1,2,4-oxadiazole derivatives containing 1,3,4-oxadiazole or pyridine structures [D]. Guiyang: Guizhou University, 2021. | |
19 | 孙鉴昕, 王将, 冯梦静, 等. 新型含1,2,4-𫫇二唑结构的酰胺类化合物的设计、合成及生物活性[J]. 山东化工,2021, 50(18): 42-44, 50. |
Sun J X, Wang J, Feng M J, et al. Design,synthesis and biological activity of novel amides containing 1,2,4-oxadiazole[J]. Shandong Chemical Industry, 2021, 50(18): 42-44, 50. | |
20 | 戴红, 丁颖, 杜显超, 等. 新型含取代𫫇二唑结构的吡唑肟类化合物的合成与生物活性研究[J]. 有机化学, 2018, 38(7): 1755-1762. |
Dai H, Ding Y, Du X C, et al. Synthesis and biological activities of novel pyrazole oximes containing substituted oxadiazole moiety[J]. Chin. J. Org. Chem., 2018, 38(7): 1755-1762. | |
21 | 王锋, 刘东东, 朱晨, 等. Flufenoxadiazam的合成及生物活性[J]. 农药, 2022, 61(5): 326-328. |
Wang F, Liu D D, Zhu C, et al. Synthesis and fungicidal activity research of flufenoxadiazam[J]. Agrochemicals, 2022, 61(5): 326-328. | |
22 | 吴文能, 费强, 王瑞, 等. 5-嘧啶基1,2,4-𫫇二唑化合物的合成及抗菌活性研究[J]. 化学研究与应用, 2019, 31(2): 355-360. |
Wu W N, Fei Q, Wang R, et al. Synthesis and fungicidal activity of 5-pyrimidine 1,2,4-oxadiazole derivatives[J]. Chem. Res. Appl., 2019, 31(2): 355-360. | |
23 | Dai H, Chen J, Li G, et al. Design, synthesis, and bioactivities of novel oxadiazole-substituted pyrazole oximes[J]. Bioorg. Med. Chem. Lett., 2017, 27(4): 950-953. |
24 | 陈东亮, 初文毅, 鄢明. 1,2,4-𫫇二唑类化合物的合成及抗菌活性研究[J]. 化学研究与应用, 2010, 22(2): 176-181. |
Chen D L, Chu W Y, Yan M. Synthesis and antibacterial activity of 1,2,4-oxadiazole derivatives[J]. Chem. Res. Appl., 2010, 22(2): 176-181. | |
25 | 田克情, 刘晓欣, 王娇, 等. 含𫫇二唑环的1,5-苯并硫氮杂卓衍生物的合成及抑菌活性研究[J]. 化学试剂, 2015, 37(7): 608-612. |
Tian K Q, Liu X X, Wang J, et al. Synthesis and antibacterical properties of 1,5-benzothiazepine derivatives containing oxadiazolo[J]. Chemical Reagents, 2015, 37(7): 608-612. | |
26 | 张霁, 金传飞, 张英俊. 含氟药物研究进展和芳(杂)环氟化及N(n=1,2,3)氟甲基化新方法[J]. 有机化学, 2014, 34(4): 662-680. |
Zhang J, Jin C F, Zhang Y J. Recent advances in research and development of fluorinated drugs and new methods for fluorination, mono-, di- and tri-fluoromethylation[J]. Chin. J. Org. Chem., 2014, 34(4): 662-680. | |
27 | 刘华铮. 基于δ-三氟甲基对亚甲基苯醌的1,6-共轭加成合成有机叠氮化合物的研究[D]. 泰安: 山东农业大学, 2021. |
Liu H Z. Research on synthesis of organic azides by 1,6-conjugation addition of δ-CF3-p-QMs[D]. Taian: Shandong Agricultural University, 2021. | |
28 | Isanbor C, O'Hagan D, Tommasini M, et al. Fluorine in medicinal chemistry: a review of anti-cancer agents[J]. J. Fluorine. Chem., 2006, 127(3): 303-319. |
29 | Hoffman T J, Stierli D. Microbiocidal oxadiazole derivatives: US10757941[P]. 2020-09-01. |
30 | Wieja A, Winter C, Rosenbaum C, et al. Use of substituted oxadiazoles for combating phytopathogenic fungi: US10118906[P]. 2018-11-06. |
31 | Gonzalez E C, Munoz A O, Solana J S. 1,2,4-Oxadiazole derivatives as histone deacetylase 6 inhibitors: US20200339569[P]. 2020-10-29. |
32 | 曹冉, 李伟, 孙汉资, 等. 计算化学方法在基于受体结构的药物分子设计中的基础理论及应用[J]. 药学学报, 2013, 48(7): 1041-1052. |
Cao R, Li W, Sun H Z, et al. Computational chemistry in structure-based drug design[J]. Acta Pharm. Sin., 2013, 48(7): 1041-1052. |
[1] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[2] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[5] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[6] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[7] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[10] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[11] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
[12] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[15] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||