化工学报 ›› 2023, Vol. 74 ›› Issue (5): 2147-2156.DOI: 10.11949/0438-1157.20230162
收稿日期:
2023-02-24
修回日期:
2023-04-03
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
彭永臻
作者简介:
张建华(1992—),男,博士,副教授,zhangjianhua@qut.edu.cn
基金资助:
Jianhua ZHANG1,2(), Mengmeng CHEN1, Yawen SUN2, Yongzhen PENG2(
)
Received:
2023-02-24
Revised:
2023-04-03
Online:
2023-05-05
Published:
2023-06-29
Contact:
Yongzhen PENG
摘要:
为实现低碳氮比生活污水高效脱氮除磷,构建了部分短程硝化同步除磷(SPNPR)耦合Anammox系统,探究了其长期运行性能、污染物转化路径和菌群结构。结果表明,系统脱氮除磷效果良好,且低温时可稳定维持,平均总氮和PO43--P去除率分别为90.7%和94.2%。PO43--P与大部分COD被SPNPR反应器去除,同时其可为Anammox提供合适的进水NH4+-N和NO2--N。氮主要被Anammox生物膜反应器去除,其中Anammox发挥主要作用,并存在一定的反硝化作用,该反应器中主要功能微生物为Candidatus_Brocadia、反硝化菌和可分解难降解有机物的菌属。SPNPR反应器中Nitrosomonas与聚磷菌的丰度较高,未检测到亚硝酸盐氧化菌,并存在丰度较高的耐寒菌属,其可在低温时产生防冷冻的胞外聚合物(EPS),保证了反应器良好的SPNPR作用。EPS分析发现,低温时反应器中EPS含量大幅增加,尤其是紧密结合型EPS,其可减缓低温等对微生物的危害,促进系统稳定运行。
中图分类号:
张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156.
Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox[J]. CIESC Journal, 2023, 74(5): 2147-2156.
水质指标 | 单位 | 数值 | 均值 |
---|---|---|---|
COD | mg∙L-1 | 97.2~246.7 | 170.7 |
NH4+-N | mg∙L-1 | 39.6~70.4 | 54.0 |
PO43--P | mg∙L-1 | 2.1~6.6 | 4.5 |
总氮 | mg∙L-1 | 43.2~77.2 | 58.3 |
总磷 | mg∙L-1 | 2.7~7.9 | 5.5 |
碳氮比 | — | 2.1~4.4 | 3.1 |
水温 | ℃ | 13.1~26.5 | 18.9 |
表1 生活污水主要水质情况
Table 1 Main characteristics of the domestic wastewater
水质指标 | 单位 | 数值 | 均值 |
---|---|---|---|
COD | mg∙L-1 | 97.2~246.7 | 170.7 |
NH4+-N | mg∙L-1 | 39.6~70.4 | 54.0 |
PO43--P | mg∙L-1 | 2.1~6.6 | 4.5 |
总氮 | mg∙L-1 | 43.2~77.2 | 58.3 |
总磷 | mg∙L-1 | 2.7~7.9 | 5.5 |
碳氮比 | — | 2.1~4.4 | 3.1 |
水温 | ℃ | 13.1~26.5 | 18.9 |
菌属 | 相对丰度/% | |
---|---|---|
SPNPR | Anammox | |
Nitrosomonas | 2.27 | 0.35 |
Nitrospira | 0.00 | 2.63 |
Candidatus_Brocadia | 0.00 | 1.72 |
Candidatus_Accumulibacter | 1.91 | 1.33 |
Dechloromonas | 2.69 | 0.93 |
Tetrasphaera | 0.67 | 0.04 |
Candidatus_Competibacter | 0.03 | 0.09 |
Thauera | 9.65 | 1.48 |
Comamonadaceae_unclassified | 2.33 | 2.87 |
Denitratisoma | 0.00 | 2.11 |
Chloroflexi_unclassified | 0.00 | 3.16 |
Anaerolineaceae_uncultured | 0.02 | 5.82 |
Saprospiraceae_uncultured | 1.49 | 5.57 |
Flavobacterium | 11.16 | 0.26 |
Thermomonas | 4.04 | 0.04 |
表2 属水平上主要功能微生物的相对丰度
Table 2 Relative abundance of main functional microorganism at genus level
菌属 | 相对丰度/% | |
---|---|---|
SPNPR | Anammox | |
Nitrosomonas | 2.27 | 0.35 |
Nitrospira | 0.00 | 2.63 |
Candidatus_Brocadia | 0.00 | 1.72 |
Candidatus_Accumulibacter | 1.91 | 1.33 |
Dechloromonas | 2.69 | 0.93 |
Tetrasphaera | 0.67 | 0.04 |
Candidatus_Competibacter | 0.03 | 0.09 |
Thauera | 9.65 | 1.48 |
Comamonadaceae_unclassified | 2.33 | 2.87 |
Denitratisoma | 0.00 | 2.11 |
Chloroflexi_unclassified | 0.00 | 3.16 |
Anaerolineaceae_uncultured | 0.02 | 5.82 |
Saprospiraceae_uncultured | 1.49 | 5.57 |
Flavobacterium | 11.16 | 0.26 |
Thermomonas | 4.04 | 0.04 |
1 | McCarty P L. What is the best biological process for nitrogen removal: when and why?[J]. Environmental Science & Technology, 2018, 52(7): 3835-3841. |
2 | 张建华. 生活污水短程硝化-厌氧氨氧化原位启动与性能强化机理[D]. 北京: 北京工业大学, 2020. |
Zhang J H. In situ start-up and performance strengthening mechanism of partial nitrification and anammox process treating domestic sewage[D]. Beijing: Beijing University of Technology, 2020. | |
3 | 杨庆, 杨玉兵, 李健敏, 等. 短程硝化耦合厌氧氨氧化工艺处理低C/N比生活污水[J]. 化工学报, 2018, 69(8): 3635-3642. |
Yang Q, Yang Y B, Li J M, et al. Partial nitrification coupled anaerobic ammonia oxidation process to treat low C/N domestic sewage[J]. CIESC Journal, 2018, 69(8): 3635-3642. | |
4 | Xu X C, Wang G, Zhou L, et al. Start-up of a full-scale SNAD-MBBR process for treating sludge digester liquor[J]. Chemical Engineering Journal, 2018, 343: 477-483. |
5 | 陈小珍, 汪晓军, Chayangkun Karasuta, 等. 反硝化-高效部分亚硝化-厌氧氨氧化工艺处理老龄垃圾渗滤液[J]. 环境科学, 2020, 41(1): 345-352. |
Chen X Z, Wang X J, Chayangkun K, et al. Nitrogen removal from mature landfill leachate via denitrification-partial nitritation-ANAMMOX based on a zeolite biological aerated filter[J]. Environmental Science, 2020, 41(1): 345-352. | |
6 | Cao Y S, van Loosdrecht M C M, Daigger G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383. |
7 | 汪晓军, 陈永兴, 陈振国. 厌氧氨氧化及其处理低碳氮比氨氮废水的研究进展[J]. 工业水处理, 2022, 42(11): 25-31. |
Wang X J, Chen Y X, Chen Z G. Anaerobic ammonia oxidation and its research progress for the treatment of low C/N ratio ammonia nitrogen wastewater[J]. Industrial Water Treatment, 2022, 42(11): 25-31. | |
8 | Li X J, Sun S, Yuan H Y, et al. Mainstream upflow nitritation-anammox system with hybrid anaerobic pretreatment: long-term performance and microbial community dynamics[J]. Water Research, 2017, 125: 298-308. |
9 | Zhang J H, Zhang Q, Li X Y, et al. Rapid start-up of partial nitritation and simultaneously phosphorus removal (PNSPR) granular sludge reactor treating low-strength domestic sewage[J]. Bioresource Technology, 2017, 243: 660-666. |
10 | 秦彦荣, 袁忠玲, 张明, 等. 部分亚硝化-厌氧氨氧化协同反硝化处理生活污水脱氮除碳[J]. 环境科学, 2021, 42(10): 4853-4863. |
Qin Y R, Yuan Z L, Zhang M, et al. Partial nitritation and anaerobic ammonia oxidation synergistic denitrification to remove nitrogen and carbon from domestic sewage[J]. Environmental Science, 2021, 42(10): 4853-4863. | |
11 | Ding S Z, Bao P, Wang B, et al. Long-term stable simultaneous partial nitrification, anammox and denitrification (SNAD) process treating real domestic sewage using suspended activated sludge[J]. Chemical Engineering Journal, 2018, 339: 180-188. |
12 | Zhang J H, Miao Y Y, Sun Y W, et al. An effective strategy for in situ start-up of mainstream anammox process treating domestic sewage[J]. Bioresource Technology, 2021, 339: 125525. |
13 | Oehmen A, Keller-Lehmann B, Zeng R J, et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1-2): 131-136. |
14 | Miao Y Y, Peng Y Z, Zhang L, et al. Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: effect of influent C/N ratios[J]. Chemical Engineering Journal, 2018, 334: 664-672. |
15 | Gu S B, Wang S Y, Yang Q, et al. Start up partial nitrification at low temperature with a real-time control strategy based on blower frequency and pH[J]. Bioresource Technology, 2012, 112: 34-41. |
16 | Kouba V, Vejmelkova D, Proksova E, et al. High-rate partial nitritation of municipal wastewater after psychrophilic anaerobic pretreatment[J]. Environmental Science & Technology, 2017, 51(19): 11029-11038. |
17 | Wang X X, Wang S Y, Xue T L, et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77: 191-200. |
18 | Smolders G J, van der Meij J, van Loosdrecht M C, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence[J]. Biotechnology and Bioengineering, 1994, 43(6): 461-470. |
19 | Zeng R J, van Loosdrecht M C M, Yuan Z G, et al. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems[J]. Biotechnology and Bioengineering, 2003, 81(1): 92-105. |
20 | Smolders G J F, van der Meij J, van Loosdrecht M C M, et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process[J]. Biotechnology and Bioengineering, 1994, 44(7): 837-848. |
21 | Zhang J H, Miao Y Y, Zhang Q, et al. Mechanism of stable sewage nitrogen removal in a partial nitrification-anammox biofilm system at low temperatures: microbial community and EPS analysis[J]. Bioresource Technology, 2020, 297: 122459. |
22 | Mao Y P, Xia Y, Wang Z P, et al. Reconstructing a Thauera genome from a hydrogenotrophic-denitrifying consortium using metagenomic sequence data[J]. Applied Microbiology and Biotechnology, 2014, 98(15): 6885-6895. |
23 | Khan S T, Horiba Y, Yamamoto M, et al. Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach[J]. Applied and Environmental Microbiology, 2002, 68(7): 3206-3214. |
24 | Liang B, Wang L Y, Mbadinga S M, et al. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation[J]. AMB Express, 2015, 5(1): 117. |
25 | Xia Y, Kong Y H, Thomsen T R, et al. Identification and ecophysiological characterization of epiphytic protein-hydrolyzing Saprospiraceae ("Candidatus Epiflobacter" spp.) in activated sludge[J]. Applied and Environmental Microbiology, 2008, 74(7): 2229-2238. |
26 | Zhao W H, Bi X J, Peng Y Z, et al. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: metabolic mechanisms, applications and influencing factors[J]. Chemosphere, 2022, 307: 135675. |
27 | Reino C, Suárez-Ojeda M E, Pérez J, et al. Kinetic and microbiological characterization of aerobic granules performing partial nitritation of a low-strength wastewater at 10℃[J]. Water Research, 2016, 101: 147-156. |
28 | Ducey T F, Vanotti M B, Shriner A D, et al. Characterization of a microbial community capable of nitrification at cold temperature[J]. Bioresource Technology, 2010, 101(2): 491-500. |
29 | Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances, 2010, 28(6): 882-894. |
30 | Teng Z D, Shao W, Zhang K Y, et al. Pb biosorption by Leclercia adecarboxylata: protective and immobilized mechanisms of extracellular polymeric substances[J]. Chemical Engineering Journal, 2019, 375: 122113. |
31 | Miao L, Zhang Q, Wang S Y, et al. Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate[J]. Bioresource Technology, 2018, 249: 108-116. |
32 | Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623-633. |
33 | Zhang Z Z, Cheng Y F, Liu Y Y, et al. Deciphering the evolution characteristics of extracellular microbial products from autotrophic and mixotrophic anammox consortia in response to nitrogen loading variations[J]. Environment International, 2019, 124: 501-510. |
34 | Gu C C, Gao P, Yang F, et al. Characterization of extracellular polymeric substances in biofilms under long-term exposure to ciprofloxacin antibiotic using fluorescence excitation-emission matrix and parallel factor analysis[J]. Environmental Science and Pollution Research, 2017, 24(15): 13536-13545. |
35 | Gilbert E M, Agrawal S, Schwartz T, et al. Comparing different reactor configurations for partial nitritation/Anammox at low temperatures[J]. Water Research, 2015, 81: 92-100. |
36 | Lackner S, Welker S, Gilbert E M, et al. Influence of seasonal temperature fluctuations on two different partial nitritation-anammox reactors treating mainstream municipal wastewater[J]. Water Science and Technology, 2015, 72(8): 1358-1363. |
[1] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[2] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[3] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[4] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[5] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[6] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[7] | 刘庆超, 贾辉, 许逸飞, 路娜, 尹延梅, 王捷. 基于FBG力学传感的曝气生物滤池中剪切力分布研究[J]. 化工学报, 2023, 74(4): 1755-1763. |
[8] | 姜家豪, 黄笑乐, 任纪云, 朱正荣, 邓磊, 车得福. 生物炭吸附溶液中Pb2+的定性及定量研究[J]. 化工学报, 2023, 74(2): 830-842. |
[9] | 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783. |
[10] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[11] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[12] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[13] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
[14] | 刘坤, 尹远, 耿文强, 夏昊天. 不同操作参数下介质阻挡放电的固氮性能研究及机理分析[J]. 化工学报, 2022, 73(9): 4045-4053. |
[15] | 姚翰林, 辛忠. 液相沉淀反应在管式微通道反应器中的流动行为研究[J]. 化工学报, 2022, 73(8): 3518-3528. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 458
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 247
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||