化工学报 ›› 2023, Vol. 74 ›› Issue (7): 3127-3138.DOI: 10.11949/0438-1157.20230528
王志龙1(), 杨烨1, 赵真真1, 田涛2, 赵桐1(
), 崔亚辉1
收稿日期:
2023-05-31
修回日期:
2023-07-13
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
赵桐
作者简介:
王志龙(1988—),男,博士研究生,讲师,zlw@xaut.edu.cn
基金资助:
Zhilong WANG1(), Ye YANG1, Zhenzhen ZHAO1, Tao TIAN2, Tong ZHAO1(
), Yahui CUI1
Received:
2023-05-31
Revised:
2023-07-13
Online:
2023-07-05
Published:
2023-08-31
Contact:
Tong ZHAO
摘要:
综合采用电阻抗谱(electrical impedance spectroscopy,EIS)方法、扫描电子显微镜(scanning electron microscopy,SEM)方法和流变法,分析了锂离子电池正极浆料(cathode slurry)的电化学特性、形貌特性和流变特性,并总结出了正极浆料的分散特性。基于COMSOL Multiphysics软件建立了正极浆料的静态仿真模型,从电化学特性角度出发,验证了EIS实验结果的正确性。综合考虑实验分析与仿真验证,结果表明:搅拌时间对正极浆料的分散特性影响较大,较长(9 min以上)或者较短(3 min以下)的搅拌时间会增加阻抗值从而恶化正极浆料内粒子的分散;而6 min的搅拌时间则会减小阻抗值从而使正极浆料内粒子分散。先将炭黑(CB)与PVDF-NMP溶液混合制成CB浆料,后将钴酸锂(LiCoO2)粒子与CB浆料混合的顺序,能使锂电池正极浆料具有较好的分散特性。最后,提出了一套提高正极浆料分散特性的制浆方案,为高性能锂电池的制备提供了理论依据与实验参考。
中图分类号:
王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138.
Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery[J]. CIESC Journal, 2023, 74(7): 3127-3138.
材料名称 | 级别/型号 | 生产厂家 |
---|---|---|
钴酸锂(LiCoO2) | 纯度>99.8% | 上海麦克林生化科技有限公司 |
导电炭黑(CB) | 电池级 | 太原力之源科技有限公司 |
聚偏二氟乙烯(PVDF) | 颗粒, MW=400000 | 上海麦克林生化科技有限公司 |
N-甲基吡咯烷酮(NMP) | 纯度>98% | 上海阿拉丁生化科技股份有限公司 |
表1 实验材料
Table 1 Experimental materials
材料名称 | 级别/型号 | 生产厂家 |
---|---|---|
钴酸锂(LiCoO2) | 纯度>99.8% | 上海麦克林生化科技有限公司 |
导电炭黑(CB) | 电池级 | 太原力之源科技有限公司 |
聚偏二氟乙烯(PVDF) | 颗粒, MW=400000 | 上海麦克林生化科技有限公司 |
N-甲基吡咯烷酮(NMP) | 纯度>98% | 上海阿拉丁生化科技股份有限公司 |
设备 | 级别/型号 | 生产厂家 |
---|---|---|
电子天平 | WTC2003 | 杭州万特衡器有限公司 |
搅拌器 | LC-ES-200SH | 上海力辰邦西仪器科技有限公司 |
LCR测量仪 | IM3536 | 日本日置公司 |
扫描电子显微镜 | Sigma500 | 卡尔蔡司光学有限公司 |
电热恒温鼓风干燥箱 | 101-008 | 绍兴市严氏风机有限公司 |
旋转流变仪 | MARS60 | 珩璟科技(上海)有限公司 |
表2 实验设备
Table 2 Experimental equipments
设备 | 级别/型号 | 生产厂家 |
---|---|---|
电子天平 | WTC2003 | 杭州万特衡器有限公司 |
搅拌器 | LC-ES-200SH | 上海力辰邦西仪器科技有限公司 |
LCR测量仪 | IM3536 | 日本日置公司 |
扫描电子显微镜 | Sigma500 | 卡尔蔡司光学有限公司 |
电热恒温鼓风干燥箱 | 101-008 | 绍兴市严氏风机有限公司 |
旋转流变仪 | MARS60 | 珩璟科技(上海)有限公司 |
材料 | 质量/g |
---|---|
CB | 3.0 |
LiCoO2 | 35.2 |
PVDF | 1.5 |
NMP | 34.9 |
表3 实验材料用量
Table 3 Mass of experimental materials
材料 | 质量/g |
---|---|
CB | 3.0 |
LiCoO2 | 35.2 |
PVDF | 1.5 |
NMP | 34.9 |
时间 | RSO/Ω | RP/Ω | Rdl/Ω | Cdl/F |
---|---|---|---|---|
t=3 min | 3.54×101 | 4.27×103 | 5.27×101 | 1.85×10-4 |
t=6 min | 2.78×101 | 2.63×103 | 3.46×101 | 2.75×10-4 |
t=9 min | 3.65×101 | 3.58×103 | 4.38×101 | 2.30×10-4 |
t=12 min | 5.01×101 | 3.94×103 | 3.69×101 | 2.32×10-4 |
t=15 min | 3.52×101 | 4.66×103 | 6.80×101 | 1.12×10-4 |
表4 不同搅拌时间下正极浆料EIS数据的关键元件拟合结果
Table 4 Key element fitting results of cathode slurry EIS data with different stirring time
时间 | RSO/Ω | RP/Ω | Rdl/Ω | Cdl/F |
---|---|---|---|---|
t=3 min | 3.54×101 | 4.27×103 | 5.27×101 | 1.85×10-4 |
t=6 min | 2.78×101 | 2.63×103 | 3.46×101 | 2.75×10-4 |
t=9 min | 3.65×101 | 3.58×103 | 4.38×101 | 2.30×10-4 |
t=12 min | 5.01×101 | 3.94×103 | 3.69×101 | 2.32×10-4 |
t=15 min | 3.52×101 | 4.66×103 | 6.80×101 | 1.12×10-4 |
混合顺序 | RSO/Ω | RP/Ω | Rdl/Ω | Cdl/F |
---|---|---|---|---|
① | 6.75×101 | 3.28×103 | 2.57×101 | 1.58×10-4 |
② | 2.95×101 | 2.63×103 | 4.99×100 | 2.38×10-4 |
③ | 2.78×101 | 2.27×103 | 4.46×100 | 2.84×10-4 |
④ | 5.09×101 | 3.89×103 | 2.90×101 | 9.38×10-5 |
表5 不同混合顺序下正极浆料EIS数据的关键元件拟合结果
Table 5 Key element fitting results of cathode slurry EIS data with different mixing orders
混合顺序 | RSO/Ω | RP/Ω | Rdl/Ω | Cdl/F |
---|---|---|---|---|
① | 6.75×101 | 3.28×103 | 2.57×101 | 1.58×10-4 |
② | 2.95×101 | 2.63×103 | 4.99×100 | 2.38×10-4 |
③ | 2.78×101 | 2.27×103 | 4.46×100 | 2.84×10-4 |
④ | 5.09×101 | 3.89×103 | 2.90×101 | 9.38×10-5 |
材料 | 介电常数 | 电导率/(S/m) | 密度/(kg/m3) |
---|---|---|---|
LiCoO2 | 19 | 1.00×10-4 | 4.90×103 |
CB | 5 | 6.67×104 | 1.80×103 |
PVDF-NMP | 32.2 | 1.00×10-6 | 1.85×103 |
表6 模型材料属性参数
Table 6 Model material attribute parameters
材料 | 介电常数 | 电导率/(S/m) | 密度/(kg/m3) |
---|---|---|---|
LiCoO2 | 19 | 1.00×10-4 | 4.90×103 |
CB | 5 | 6.67×104 | 1.80×103 |
PVDF-NMP | 32.2 | 1.00×10-6 | 1.85×103 |
模型 | 四面体 | 三角形 | 边单元 | 顶点单元 | 最小单元质量 | 平均单元质量 | 网格体积/mm3 |
---|---|---|---|---|---|---|---|
(a1) | 605846 | 88281 | 9216 | 1197 | 0.093 | 0.656 | 81730 |
(b1) | 594577 | 88313 | 9216 | 1197 | 0.093 | 0.655 | |
(c1) | 585765 | 85445 | 8496 | 1077 | 0.093 | 0.655 | |
(d1) | 582733 | 87021 | 8869 | 1135 | 0.093 | 0.655 |
表7 不同搅拌时间下各仿真模型的网格信息统计
Table 7 Grid information statistics of each simulation model under different stirring time
模型 | 四面体 | 三角形 | 边单元 | 顶点单元 | 最小单元质量 | 平均单元质量 | 网格体积/mm3 |
---|---|---|---|---|---|---|---|
(a1) | 605846 | 88281 | 9216 | 1197 | 0.093 | 0.656 | 81730 |
(b1) | 594577 | 88313 | 9216 | 1197 | 0.093 | 0.655 | |
(c1) | 585765 | 85445 | 8496 | 1077 | 0.093 | 0.655 | |
(d1) | 582733 | 87021 | 8869 | 1135 | 0.093 | 0.655 |
模型 | 四面体 | 三角形 | 边单元 | 顶点单元 | 最小单元质量 | 平均单元质量 | 网格体积/mm3 |
---|---|---|---|---|---|---|---|
(a2) | 556618 | 85379 | 8496 | 1077 | 0.093 | 0.656 | 81730 |
(b2) | 627895 | 88071 | 9143 | 1185 | 0.093 | 0.656 |
表8 不同混合顺序下各仿真模型的网格信息统计
Table 8 Grid information statistics of each simulation model under different mixing orders
模型 | 四面体 | 三角形 | 边单元 | 顶点单元 | 最小单元质量 | 平均单元质量 | 网格体积/mm3 |
---|---|---|---|---|---|---|---|
(a2) | 556618 | 85379 | 8496 | 1077 | 0.093 | 0.656 | 81730 |
(b2) | 627895 | 88071 | 9143 | 1185 | 0.093 | 0.656 |
1 | 陈志金, 张一鸣, 田爽, 等. 锂离子电池导电剂的研究进展[J]. 电源技术, 2019, 43(2): 333-337. |
Chen Z J, Zhang Y M, Tian S, et al. Research progress of conducting agent for lithium ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(2): 333-337. | |
2 | Hawley W B, Li J L. Beneficial rheological properties of lithium-ion battery cathode slurries from elevated mixing and coating temperatures[J]. Journal of Energy Storage, 2019, 26: 100994. |
3 | Wang Y, Zhang C, Zhang L, et al. Performance mutation mechanism and parametric characterization method of high-capacity lithium-ion battery[J]. Journal of Power Sources, 2021, 507(1): 1-11. |
4 | Gu Q Q, Xue H J, Li Z W, et al. High-performance polyethylene separators for lithium-ion batteries modified by phenolic resin[J]. Journal of Power Sources, 2021, 483(31): 1-8. |
5 | 王海文. 新能源汽车动力电池应用现状及发展趋势[J]. 汽车测试报告, 2022(19): 64-66. |
Wang H W. The application status and development trend of new energy vehicle power battery[J]. Automotive Test Report, 2022(19): 64-66. | |
6 | Xim K M, Jeon W S, Chung I J. Effect of mixing sequences on the electrode characteristics of lithium-ion rechargeable batteries[J]. Journal of Power Sources, 1999, 83(1/2): 108-113. |
7 | Liu D J, Chen L C, Liu T J, et al. An effective mixing for lithium ion battery slurries[J]. Advances in Chemical Engineering & Science, 2014, 4(4): 515-528. |
8 | 李辉, 张裕中. 锂电池浆料超剪切分散机理与实验研究[J]. 轻工机械, 2010, 28(6): 28-31. |
Li H, Zhang Y Z. Study of the mechanism and experiment of high-shear dispersion of lithium ion battery slurry[J]. Light Industry Machinery, 2010, 28(6): 28-31. | |
9 | Wang M, Dang D, Meyer A, et al. Effects of the mixing sequence on making lithium ion battery electrodes[J]. Journal of The Electrochemical Society, 2020, 167(10): 100518-100529. |
10 | Haarmann M, Griel D, Kwade A. Continuous processing of cathode slurry by extrusion for lithium-ion batteries[J]. Energy Technology, 2021, 9(10): 2100250. |
11 | Zhao B, Yin D, Gao Y, et al. Concentration dependence of yield stress, thixotropy, and viscoelasticity rheological behavior of lithium-ion battery slurry[J]. Ceramics International, 2022, 48(13): 19073-19080. |
12 | Mitsuhiro T, Katakura S, Miyazaki K, et al. Relation between mixing processes and properties of lithium-ion battery electrode-slurry[J]. Electrochemistry -Tokyo, 2021, 89(6): 585-589. |
13 | Wang Z L, Zhao T, Takei M. Morphological structure characterizations in lithium-ion battery (LIB) slurry under shear rotational conditions by on-line dynamic electrochemical impedance spectroscopy (EIS) method[J]. Journal of the Electrochemical Society, 2017, 164(9): A2268-A2276. |
14 | Wang M, Dang D Y, Meyer A, et al. Effects of the mixing sequence on making lithium ion battery electrodes[J]. Journal of the Electrochemical Society, 2020, 167(10): 100518. |
15 | Lee G W, Ryu J H, Han W, et al. Effect of slurry preparation process on electrochemical performances of LiCoO2 composite electrode[J]. Journal of Power Sources, 2010, 195(18): 6049-6054. |
16 | Bai S J, Song Y S. Correlation between internal structure and electrochemical impedance spectroscopy of multiphase slurry systems[J]. Analytical Chemistry, 2013, 85(8): 3918-3925. |
17 | Wang X L, Yue H, Liu G L, et al. The application of COMSOL multiphysics in direct current method forward modeling[J]. Procedia Earth and Planetary Science, 2011, 3: 266-272. |
18 | Cai L, White R E. Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software[J]. Journal of Power Sources, 2011, 196(14): 5985-5989. |
19 | Hosseinzadeh E, Marco J, Jennings P. Electrochemical-thermal modelling and optimisation of lithium-ion battery design parameters using analysis of variance[J]. Energies, 2017, 10(9): 1-22. |
20 | Geng Z, Wang S, Lacey M J, et al. Bridging physics-based and equivalent circuit models for lithium-ion batteries[J]. Electrochimica Acta, 2021, 372(9): 137829 . |
21 | Li Y D, Wang W W, Lin C, et al. High-efficiency multiphysics coupling framework for cylindrical lithium-ion battery under mechanical abuse[J]. Journal of Cleaner Production, 2021, 286: 125451. |
22 | 李革臣, 古艳磊. 电化学阻抗谱法预测锂电池荷电状态[J]. 电源技术, 2008, 32(9): 599-602. |
Li G C, Gu Y L. SOC of lithium-ion rechargeable battery predicted by electrochemical impedance spectroscopy[J]. Chinese Journal of Power Sources, 2008, 32(9): 599-602. | |
23 | Loureiro F J A, Pukazhselvan D, Bdikin I, et al. Electrochemical behaviour of magnesium hydride-added titania anode for Li-ion battery[J]. Electrochimica Acta, 2021, 394(20): 139142. |
24 | Rabissi C, Innocenti A, Sordi G, et al. A comprehensive physical-based sensitivity analysis of the electrochemical impedance response of lithium-ion batteries[J]. Energy Technology, 2021, 9: 2000986. |
25 | Senapati P K, Mishra B K, Parida A. Modeling of viscosity for power plant ash slurry at higher concentrations: effect of solids volume fraction, particle size and hydrodynamic interactions[J]. Powder Technology, 2010, 197(1/2): 1-8. |
26 | Baboo J P, Yatoo M A, Dent M, et al. Exploring different binders for a LiFePO4 battery, battery testing, modeling and simulations[J]. Energies, 2022, 15 (7): 1-22 |
27 | Wang Z L, Zhao T, Takei M. Clarification of particle dispersion behaviors based on the dielectric characteristics of cathode slurry in lithium-ion battery (LIB)[J]. Journal of the Electrochemical Society, 2019, 166(2): A35-A46. |
28 | 李博文. 应用于微重力环境的旋转流变仪设计[D]. 天津: 天津大学, 2018. |
Li B W. Design of rotary rheometer applied to microgravity environment[D]. Tianjin: Tianjin University, 2018. | |
29 | 庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010, 22(6): 1044-1057. |
Zhuang Q C, Xu S D, Qiu X Y, et al. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry, 2010, 22(6): 1044-1057. | |
30 | Wang Z L, Zhao T, Yao J F, et al. Evaluation of the electrochemical characterizations of lithium-ion battery (LIB) slurry with 10-parameter electrical equivalent circuit (EEC)[J]. Journal of the Electrochemical Society, 2016, 164(2): A8-A17. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[3] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[4] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[5] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[6] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[7] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
[8] | 胡华坤, 薛文东, 霍思达, 李勇, 蒋朋. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454. |
[9] | 杨伟, 王昱杰, 方凯斌, 邹汉波, 陈胜洲, 刘自力. Co-Mn比例调控对LiNi0.8Co0.10-y Mn0.05+y Al0.05O2材料性能影响探究[J]. 化工学报, 2022, 73(12): 5615-5624. |
[10] | 贾理男, 杜一博, 郭邦军, 张希. 基于硫化物电解质的全固态锂离子电池负极研究进展[J]. 化工学报, 2022, 73(12): 5289-5304. |
[11] | 王朋朋, 贾洋刚, 邵霞, 程婕, 冒爱琴, 檀杰, 方道来. K+掺杂尖晶石型(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4高熵氧化物负极材料制备与储锂性能研究[J]. 化工学报, 2022, 73(12): 5625-5637. |
[12] | 周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96. |
[13] | 王慧艳, 陈怡沁, 周静红, 曹约强, 周兴贵. 锂离子电池正极涂层孔隙结构优化的数值模拟[J]. 化工学报, 2022, 73(1): 376-383. |
[14] | 梁坤峰, 王莫然, 高美洁, 吕振伟, 徐红玉, 董彬, 高凤玲. 纯电动车集成热管理系统性能的热力学分析[J]. 化工学报, 2021, 72(S1): 494-502. |
[15] | 夏青, 徐宇兴, 周运成, 纪雪倩, 冯海兰, 王鹏飞, 谭强强. 核壳结构米粒状FeS2/C纳米材料制备及储锂性能研究[J]. 化工学报, 2021, 72(5): 2849-2856. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 304
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 633
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||