| 1 |
Lee J H, Park S J. Recent advances in preparations and applications of carbon aerogels: a review[J]. Carbon, 2020, 163: 1-18.
|
| 2 |
Yu Z L, Yang N, Apostolopoulou-Kalkavoura V, et al. Fire-retardant and thermally insulating phenolic-silica aerogels[J]. Angewandte Chemie, 2018, 57(17): 4538-4542.
|
| 3 |
Wu K D, Dong W, Pan Y K, et al. Lightweight and flexible phenolic aerogels with three-dimensional foam reinforcement for acoustic and thermal insulation[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1241-1249.
|
| 4 |
Wu K D, Zhou Q, Cao J X, et al. Ultrahigh-strength carbon aerogels for high temperature thermal insulation[J]. Journal of Colloid and Interface Science, 2022, 609: 667-675.
|
| 5 |
Wilson S M W, Al-Enzi F, Gabriel V A, et al. Effect of pore size and heterogeneous surface on the adsorption of CO2, N2, O2, and Ar on carbon aerogel, RF aerogel, and activated carbons[J]. Microporous and Mesoporous Materials, 2021, 322: 111089.
|
| 6 |
Hasegawa G, Kanamori K, Kiyomura T, et al. Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors[J]. Chemistry of Materials, 2016, 28(11): 3944-3950.
|
| 7 |
Song W D, Jia X F, Ma C, et al. Facile fabrication of lightweight carbon fiber/phenolic ablator with improved flexibility via natural rubber modification[J]. Composites Communications, 2022, 31: 101119.
|
| 8 |
Jia X F, Song W D, Chen W, et al. Facile fabrication of lightweight mullite fiber/phenolic ablator with low thermal conductivity via ambient pressure impregnation[J]. Ceramics International, 2021, 47(19): 28032-28036.
|
| 9 |
Cheng H M, Fan Z H, Hong C Q, et al. Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection[J]. Composites Part A Applied Science and Manufacturing, 2021, 143: 106313.
|
| 10 |
Jia X F, Dai B W, Zhu Z X, et al. Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying[J]. Carbon, 2016, 108: 551-560.
|
| 11 |
Seraji M M, Sameri G, Davarpanah J, et al. The effect of high temperature sol-gel polymerization parameters on the microstructure and properties of hydrophobic phenol-formaldehyde/silica hybrid aerogels[J]. Journal of Colloid and Interface Science, 2017, 493: 103-110.
|
| 12 |
Li F J, Xie L, Sun G H, et al. Regulating pore structure of carbon aerogels by graphene oxide as ‘shape-directing’ agent[J]. Microporous and Mesoporous Materials, 2017, 240: 145-148.
|
| 13 |
Tannert R, Schwan M, Ratke L. Reduction of shrinkage and brittleness for resorcinol-formaldehyde aerogels by means of a pH-controlled sol-gel process[J]. The Journal of Supercritical Fluids, 2015, 106: 57-61.
|
| 14 |
Schwan M, Ratke L. Flexibilisation of resorcinol-formaldehyde aerogels[J]. Journal of Materials Chemistry A, 2013, 1(43): 13462-13468.
|
| 15 |
Wu C, Huang H, Jin X Y, et al. Water-assisted synthesis of phenolic aerogel with superior compression and thermal insulation performance enabled by thick-united nano-structure[J]. Chemical Engineering Journal, 2023, 464: 142805.
|
| 16 |
Huang H, Hong C Q, Jin X Y, et al. Facile fabrication of superflexible and thermal insulating phenolic aerogels backboned by silicone networks[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107270.
|
| 17 |
Yu Z L, Wu Z Y, Xin S, et al. General and straightforward synthetic route to phenolic resin gels templated by chitosan networks[J]. Chemistry of Materials, 2014, 26(24): 6915-6918.
|
| 18 |
Hasegawa G, Shimizu T, Kanamori K, et al. Highly flexible hybrid polymer aerogels and xerogels based on resorcinol-formaldehyde with enhanced elastic stiffness and recoverability: insights into the origin of their mechanical properties[J]. Chemistry of Materials, 2017, 29(5): 2122-2134.
|
| 19 |
Wang L, Wang J L, Zheng L H, et al. Superelastic, anticorrosive, and flame-resistant nitrogen-containing resorcinol formaldehyde/graphene oxide composite aerogels[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10873-10879.
|
| 20 |
Hayase G. Fabrication of boehmite nanofiber internally-reinforced resorcinol-formaldehyde macroporous monoliths for heat/flame protection[J]. ACS Applied Nano Materials, 2018, 1(11): 5989-5993.
|
| 21 |
Shahzamani M, Bagheri R, Bahramian A R, et al. Preparation and characterization of hybrid aerogels from novolac and hydroxyl-terminated polybutadiene[J]. Journal of Materials Science, 2016, 51(17): 7861-7873.
|
| 22 |
师建军, 孔磊, 左小彪, 等. 酚醛/SiO2双体系凝胶网络结构杂化气凝胶的制备与性能[J]. 高分子学报, 2018(10): 1307-1314.
|
|
Shi J J, Kong L, Zuo X B, et al. Preparation of PR/SiO2 hybrid phenolic aerogel with bi-component gel networks[J]. Acta Polymerica Sinica, 2018 (10): 1307-1314.
|
| 23 |
Wang C H, Cheng H M, Hong C Q, et al. Lightweight chopped carbon fibre reinforced silica-phenolic resin aerogel nanocomposite: facile preparation, properties and application to thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 81-90.
|
| 24 |
Li S, Han Y, Chen F H, et al. The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin[J]. Polymer Degradation and Stability, 2016, 124: 68-76.
|
| 25 |
Li S, Li H, Li Z, et al. Polysiloxane modified phenolic resin with co-continuous structure[J]. Polymer, 2017, 120: 217-222.
|
| 26 |
Chen D J, Gao H Y, Jin Z K, et al. Vacuum-dried synthesis of low-density hydrophobic monolithic bridged silsesquioxane aerogels for oil/water separation: effects of acid catalyst and its excellent flexibility[J]. ACS Applied Nano Materials, 2018, 1(2): 933-939.
|
| 27 |
Chen D J, Gao H Y, Liu P P, et al. Directly ambient pressure dried robust bridged silsesquioxane and methylsiloxane aerogels: effects of precursors and solvents[J]. RSC Advances, 2019, 9(15): 8664-8671.
|
| 28 |
He H, Geng L Y, Liu F, et al. Facile preparation of a phenolic aerogel with excellent flexibility for thermal insulation[J]. European Polymer Journal, 2022, 163: 110905.
|
| 29 |
Yin R Y, Cheng H M, Hong C Q, et al. Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 500-510.
|
| 30 |
Zhan H J, Wu K J, Hu Y L, et al. Biomimetic carbon tube aerogel enables super-elasticity and thermal insulation[J]. Chem, 2019, 5(7): 1871-1882.
|
| 31 |
Yun S, Luo H J, Gao Y F. Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity[J]. Journal of Materials Chemistry A, 2014, 2(35): 14542-14549.
|
| 32 |
Zhao S Y, Zhang Z, Sèbe G, et al. Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization[J]. Advanced Functional Materials, 2015, 25(15): 2326-2334.
|