化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3572-3583.DOI: 10.11949/0438-1157.20230500
徐文杰1(), 贾献峰2, 王际童1, 乔文明1(
), 凌立成1, 王任平3, 余子舰3, 张寅旭3
收稿日期:
2023-05-23
修回日期:
2023-07-23
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
乔文明
作者简介:
徐文杰(1997— ),男,硕士研究生,xwjecust@163.com
基金资助:
Wenjie XU1(), Xianfeng JIA2, Jitong WANG1, Wenming QIAO1(
), Licheng LING1, Renping WANG3, Zijian YU3, Yinxu ZHANG3
Received:
2023-05-23
Revised:
2023-07-23
Online:
2023-08-25
Published:
2023-10-18
Contact:
Wenming QIAO
摘要:
酚醛气凝胶的本征脆性限制了其在吸附、隔热等领域的应用。以3-氨丙基三乙氧基硅烷和对苯二甲醛配制有机硅溶液,将其与热塑型酚醛树脂-六亚甲基四胺溶液混合,利用化学键作用解决了两体系的相容性问题,再经溶胶-凝胶反应和常压干燥工艺制备有机硅/酚醛杂化气凝胶。由于韧性有机硅分子链的引入和较小凝胶颗粒尺寸的效应,改善了酚醛气凝胶的脆性。研究结果表明,杂化气凝胶具有纳米级凝胶网络结构,表现出较低的密度(0.187 g/cm3)和室温热导率[0.035 W/(m·K)];在压缩应力作用下,杂化气凝胶能够更好地耗散应力而未发生脆性断裂,其压缩模量低至13.92 MPa,相较于纯酚醛气凝胶降低了46%。这种通过简易高效方法制备的杂化气凝胶具有广阔的应用前景。
中图分类号:
徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583.
Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel[J]. CIESC Journal, 2023, 74(8): 3572-3583.
Samples | Volume shrinkage/% | Density/(g/cm3) |
---|---|---|
Si/PR-0 | 3.7 | 0.170 |
Si/PR-25 | 4.2 | 0.187 |
Si/PR-50 | 7.9 | 0.242 |
Si/PR-75 | 8.6 | 0.293 |
Si/PR-100 | 9.6 | 0.327 |
表1 Si/PR杂化气凝胶样品的体积收缩率和密度
Table 1 Volume shrinkage and density of representative Si/PR hybrid aerogel samples
Samples | Volume shrinkage/% | Density/(g/cm3) |
---|---|---|
Si/PR-0 | 3.7 | 0.170 |
Si/PR-25 | 4.2 | 0.187 |
Si/PR-50 | 7.9 | 0.242 |
Si/PR-75 | 8.6 | 0.293 |
Si/PR-100 | 9.6 | 0.327 |
Samples | SBET/ (m2/g) | Smeso/(m2/g) | Vtotal/(cm3/g) | Vmic/(cm3/g) | Vmeso/(cm3/g) | Porosity/% |
---|---|---|---|---|---|---|
Si/PR-0 | 12.56 | 10.28 | 0.03 | 0 | 0.03 | 99.49 |
Si/PR-25 | 48.63 | 27.93 | 0.10 | 0 | 0.10 | 98.13 |
Si/PR-50 | 69.72 | 49.43 | 0.19 | 0 | 0.18 | 95.40 |
Si/PR-75 | 94.34 | 75.44 | 0.27 | 0 | 0.26 | 92.09 |
Si/PR-100 | 127.47 | 81.20 | 0.30 | 0.01 | 0.29 | 90.19 |
表2 Si/PR杂化气凝胶样品的孔结构特征
Table 2 Textural characteristics of Si/PR hybrid aerogel sample
Samples | SBET/ (m2/g) | Smeso/(m2/g) | Vtotal/(cm3/g) | Vmic/(cm3/g) | Vmeso/(cm3/g) | Porosity/% |
---|---|---|---|---|---|---|
Si/PR-0 | 12.56 | 10.28 | 0.03 | 0 | 0.03 | 99.49 |
Si/PR-25 | 48.63 | 27.93 | 0.10 | 0 | 0.10 | 98.13 |
Si/PR-50 | 69.72 | 49.43 | 0.19 | 0 | 0.18 | 95.40 |
Si/PR-75 | 94.34 | 75.44 | 0.27 | 0 | 0.26 | 92.09 |
Si/PR-100 | 127.47 | 81.20 | 0.30 | 0.01 | 0.29 | 90.19 |
图8 Si/PR杂化气凝胶的隔热机理示意图及室温热导率
Fig.8 Schematic diagram of the heat insulation mechanism and room-temperature thermal conductivities of Si/PR hybrid aerogels
1 | Lee J H, Park S J. Recent advances in preparations and applications of carbon aerogels: a review[J]. Carbon, 2020, 163: 1-18. |
2 | Yu Z L, Yang N, Apostolopoulou-Kalkavoura V, et al. Fire-retardant and thermally insulating phenolic-silica aerogels[J]. Angewandte Chemie, 2018, 57(17): 4538-4542. |
3 | Wu K D, Dong W, Pan Y K, et al. Lightweight and flexible phenolic aerogels with three-dimensional foam reinforcement for acoustic and thermal insulation[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1241-1249. |
4 | Wu K D, Zhou Q, Cao J X, et al. Ultrahigh-strength carbon aerogels for high temperature thermal insulation[J]. Journal of Colloid and Interface Science, 2022, 609: 667-675. |
5 | Wilson S M W, Al-Enzi F, Gabriel V A, et al. Effect of pore size and heterogeneous surface on the adsorption of CO2, N2, O2, and Ar on carbon aerogel, RF aerogel, and activated carbons[J]. Microporous and Mesoporous Materials, 2021, 322: 111089. |
6 | Hasegawa G, Kanamori K, Kiyomura T, et al. Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors[J]. Chemistry of Materials, 2016, 28(11): 3944-3950. |
7 | Song W D, Jia X F, Ma C, et al. Facile fabrication of lightweight carbon fiber/phenolic ablator with improved flexibility via natural rubber modification[J]. Composites Communications, 2022, 31: 101119. |
8 | Jia X F, Song W D, Chen W, et al. Facile fabrication of lightweight mullite fiber/phenolic ablator with low thermal conductivity via ambient pressure impregnation[J]. Ceramics International, 2021, 47(19): 28032-28036. |
9 | Cheng H M, Fan Z H, Hong C Q, et al. Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection[J]. Composites Part A Applied Science and Manufacturing, 2021, 143: 106313. |
10 | Jia X F, Dai B W, Zhu Z X, et al. Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying[J]. Carbon, 2016, 108: 551-560. |
11 | Seraji M M, Sameri G, Davarpanah J, et al. The effect of high temperature sol-gel polymerization parameters on the microstructure and properties of hydrophobic phenol-formaldehyde/silica hybrid aerogels[J]. Journal of Colloid and Interface Science, 2017, 493: 103-110. |
12 | Li F J, Xie L, Sun G H, et al. Regulating pore structure of carbon aerogels by graphene oxide as ‘shape-directing’ agent[J]. Microporous and Mesoporous Materials, 2017, 240: 145-148. |
13 | Tannert R, Schwan M, Ratke L. Reduction of shrinkage and brittleness for resorcinol-formaldehyde aerogels by means of a pH-controlled sol-gel process[J]. The Journal of Supercritical Fluids, 2015, 106: 57-61. |
14 | Schwan M, Ratke L. Flexibilisation of resorcinol-formaldehyde aerogels[J]. Journal of Materials Chemistry A, 2013, 1(43): 13462-13468. |
15 | Wu C, Huang H, Jin X Y, et al. Water-assisted synthesis of phenolic aerogel with superior compression and thermal insulation performance enabled by thick-united nano-structure[J]. Chemical Engineering Journal, 2023, 464: 142805. |
16 | Huang H, Hong C Q, Jin X Y, et al. Facile fabrication of superflexible and thermal insulating phenolic aerogels backboned by silicone networks[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107270. |
17 | Yu Z L, Wu Z Y, Xin S, et al. General and straightforward synthetic route to phenolic resin gels templated by chitosan networks[J]. Chemistry of Materials, 2014, 26(24): 6915-6918. |
18 | Hasegawa G, Shimizu T, Kanamori K, et al. Highly flexible hybrid polymer aerogels and xerogels based on resorcinol-formaldehyde with enhanced elastic stiffness and recoverability: insights into the origin of their mechanical properties[J]. Chemistry of Materials, 2017, 29(5): 2122-2134. |
19 | Wang L, Wang J L, Zheng L H, et al. Superelastic, anticorrosive, and flame-resistant nitrogen-containing resorcinol formaldehyde/graphene oxide composite aerogels[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10873-10879. |
20 | Hayase G. Fabrication of boehmite nanofiber internally-reinforced resorcinol-formaldehyde macroporous monoliths for heat/flame protection[J]. ACS Applied Nano Materials, 2018, 1(11): 5989-5993. |
21 | Shahzamani M, Bagheri R, Bahramian A R, et al. Preparation and characterization of hybrid aerogels from novolac and hydroxyl-terminated polybutadiene[J]. Journal of Materials Science, 2016, 51(17): 7861-7873. |
22 | 师建军, 孔磊, 左小彪, 等. 酚醛/SiO2双体系凝胶网络结构杂化气凝胶的制备与性能[J]. 高分子学报, 2018(10): 1307-1314. |
Shi J J, Kong L, Zuo X B, et al. Preparation of PR/SiO2 hybrid phenolic aerogel with bi-component gel networks[J]. Acta Polymerica Sinica, 2018 (10): 1307-1314. | |
23 | Wang C H, Cheng H M, Hong C Q, et al. Lightweight chopped carbon fibre reinforced silica-phenolic resin aerogel nanocomposite: facile preparation, properties and application to thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 81-90. |
24 | Li S, Han Y, Chen F H, et al. The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin[J]. Polymer Degradation and Stability, 2016, 124: 68-76. |
25 | Li S, Li H, Li Z, et al. Polysiloxane modified phenolic resin with co-continuous structure[J]. Polymer, 2017, 120: 217-222. |
26 | Chen D J, Gao H Y, Jin Z K, et al. Vacuum-dried synthesis of low-density hydrophobic monolithic bridged silsesquioxane aerogels for oil/water separation: effects of acid catalyst and its excellent flexibility[J]. ACS Applied Nano Materials, 2018, 1(2): 933-939. |
27 | Chen D J, Gao H Y, Liu P P, et al. Directly ambient pressure dried robust bridged silsesquioxane and methylsiloxane aerogels: effects of precursors and solvents[J]. RSC Advances, 2019, 9(15): 8664-8671. |
28 | He H, Geng L Y, Liu F, et al. Facile preparation of a phenolic aerogel with excellent flexibility for thermal insulation[J]. European Polymer Journal, 2022, 163: 110905. |
29 | Yin R Y, Cheng H M, Hong C Q, et al. Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 500-510. |
30 | Zhan H J, Wu K J, Hu Y L, et al. Biomimetic carbon tube aerogel enables super-elasticity and thermal insulation[J]. Chem, 2019, 5(7): 1871-1882. |
31 | Yun S, Luo H J, Gao Y F. Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity[J]. Journal of Materials Chemistry A, 2014, 2(35): 14542-14549. |
32 | Zhao S Y, Zhang Z, Sèbe G, et al. Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization[J]. Advanced Functional Materials, 2015, 25(15): 2326-2334. |
[1] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[2] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[3] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
[4] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[5] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[6] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[7] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[8] | 郑少杰, 王建斌, 胡激江, 李伯耿, 袁文博, 王宗, 姚臻. 单体组成切换法调控聚丙烯/丁烯合金的结构与性能[J]. 化工学报, 2023, 74(2): 904-915. |
[9] | 赵亚静, 胡激江, 介素云, 李伯耿. HTPB引入方式对不饱和树脂改性效果的影响[J]. 化工学报, 2023, 74(2): 883-892. |
[10] | 高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773. |
[11] | 王建, 雷子萱, 姚家钰, 李建, 刘育红. 对苯二甲醛酚醛树脂的制备及其固化动力学研究[J]. 化工学报, 2022, 73(3): 1403-1415. |
[12] | 王利霞, 毕肇杰, 史淼磊, 王晨, 王东方, 李倩. UHMWPE/PEG共混方式及配比对UHMWPE缠结行为及性能的影响[J]. 化工学报, 2022, 73(2): 933-940. |
[13] | 牛卉芳, 闫伦靖, 吕鹏, 张旭峰, 王美君, 孔娇, 鲍卫仁, 常丽萍. 煤焦油沥青基碳气凝胶微球的制备及分析[J]. 化工学报, 2022, 73(12): 5605-5614. |
[14] | 徐欢, 柯律, 张生辉, 张子林, 韩广东, 崔金声, 唐道远, 黄东辉, 高杰峰, 何新建. GO表面原位生长CNTs改善聚丙烯导热复合材料分散与界面形态[J]. 化工学报, 2022, 73(11): 5150-5157. |
[15] | 徐力, 吴谦秋, 雷子萱, 李嘉玄, 刘育红. 硅氧烷预聚体改性热塑性酚醛树脂的交联结构及其力学性能[J]. 化工学报, 2022, 73(10): 4734-4744. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 579
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 351
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||