化工学报 ›› 2024, Vol. 75 ›› Issue (1): 60-73.DOI: 10.11949/0438-1157.20230662
张强1,2(), 王宪飞3, 王凯1, 骆广生1(
), 路忠凯3
收稿日期:
2023-06-30
修回日期:
2023-09-12
出版日期:
2024-01-25
发布日期:
2024-03-11
通讯作者:
骆广生
作者简介:
张强(1967—),男,博士研究生,zhangqiang1@sinochem.com
基金资助:
Qiang ZHANG1,2(), Xianfei WANG3, Kai WANG1, Guangsheng LUO1(
), Zhongkai LU3
Received:
2023-06-30
Revised:
2023-09-12
Online:
2024-01-25
Published:
2024-03-11
Contact:
Guangsheng LUO
摘要:
环氧化物与环状酸酐的开环共聚是一种新型的脂肪族聚酯合成技术,其技术核心之一是催化剂的选择与应用。与金属催化剂相比,非金属催化剂在简易性、低毒性、单体适应性、经济性等方面表现出潜在优势,得到迅速发展。针对非金属催化剂在环氧化物和环状酸酐共聚领域的研究进展进行了综述,总结并评述了近年来有机碱、Lewis酸碱对以及其他非金属催化剂在开环共聚反应中的工作机制认识和催化实施效果,对其发展方向和工业化应用潜力进行了展望。
中图分类号:
张强, 王宪飞, 王凯, 骆广生, 路忠凯. 非金属催化剂在环氧化物和环状酸酐共聚中的研究进展[J]. 化工学报, 2024, 75(1): 60-73.
Qiang ZHANG, Xianfei WANG, Kai WANG, Guangsheng LUO, Zhongkai LU. Advances in metal-free catalysts in copolymerization of epoxides and cyclic anhydrides[J]. CIESC Journal, 2024, 75(1): 60-73.
图7 t-BuP1/TEB对催化环状酸酐和t-BGA的开环交替共聚[52]
Fig.7 Ring-opening alternating copolymerization of cyclic anhydrides and t-BGA catalyzed by a t-BuP1/TEB pair[52]
1 | 邹文奇, 陈通, 叶海木, 等. 可生物降解聚酯的制备及性能研究进展[J]. 化工学报, 2021, 72(12): 6216-6231. |
Zou W Q, Chen T, Ye H M, et al. Research progress on the preparation and properties of biodegradable polyester[J]. CIESC Journal, 2021, 72(12): 6216-6231. | |
2 | 李祥瑞, 孟令宇, 秦泽秀, 等. 改性聚碳酸亚丙酯研究进展[J]. 工程塑料应用, 2022, 50(3): 164-169. |
Li X R, Meng L Y, Qin Z X, et al. Research progress of modified propylene carbonate[J]. Engineering Plastics Application, 2022, 50(3): 164-169. | |
3 | 高宏娟, 任伟民. 内酯和环氧烷烃共聚合成聚酯-聚醚共聚物的研究进展[J]. 化工学报, 2021, 72(1): 440-451. |
Gao H J, Ren W M. Review on synthesis of polyether-co-polyester from copolymerization of epoxides and lactones[J]. CIESC Journal, 2021, 72(1): 440-451. | |
4 | Haque F M, Ishibashi J S A, Lidston C L, et al. Defining the macromolecules of tomorrow through synergistic sustainable polymer research[J]. Chemical Reviews, 2022, 122(6): 6322-6373. |
5 | Longo J M, Sanford M J, Coates G W. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure-property relationships[J]. Chemical Reviews, 2016, 116(24): 15167-15197. |
6 | 胡岚方, 张兴宏. 有机小分子催化环醚与环状酸酐共聚研究进展[J]. 功能高分子学报, 2019, 32(3): 259-270. |
Hu L F, Zhang X H. Recent progress in the copolymerization of cyclic ethers and cyclic anhydrides via organocatalysts[J]. Journal of Functional Polymers, 2019, 32(3): 259-270. | |
7 | Brulé E, Guo J, Coates G, et al. Metal-catalyzed synthesis of alternating copolymers[J]. Macromolecular Rapid Communications, 2011, 32(2): 169-185. |
8 | Lustoň J, Vašš F. Anionic copolymerization of cyclic ethers with cyclic anhydrides[M]//Anionic Polymerization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984: 91-133. |
9 | Kozak C M, Ambrose K, Anderson T S. Copolymerization of carbon dioxide and epoxides by metal coordination complexes[J]. Coordination Chemistry Reviews, 2018, 376: 565-587. |
10 | Wang Y Y, Darensbourg D J. Carbon dioxide-based functional polycarbonates: metal catalyzed copolymerization of CO2 and epoxides[J]. Coordination Chemistry Reviews, 2018, 372: 85-100. |
11 | 卓春伟, 范培鑫, 刘顺杰, 等. 微量酸酐诱导增强的二氧化碳/环氧氯丙烷共聚反应[J]. 高分子学报, 2023, 54(4): 476-486 |
Zhuo C W, Fan P X, Liu S J, et al. Trace anhydride-enhanced carbon dioxide/epichlorohydrin copolymerization[J]. Acta Polymerica Sinica, 2023, 54(4): 476-486. | |
12 | Sanford M J, Peña Carrodeguas L, van Zee N J, et al. Alternating copolymerization of propylene oxide and cyclohexene oxide with tricyclic anhydrides: access to partially renewable aliphatic polyesters with high glass transition temperatures[J]. Macromolecules, 2016, 49(17): 6394-6400. |
13 | Liang X, Tan F, Zhu Y Q. Recent developments in ring-opening copolymerization of epoxides with CO2 and cyclic anhydrides for biomedical applications[J]. Frontiers in Chemistry, 2021, 9: 647245. |
14 | 周延川, 庞烜, 陈学思. 选择性催化混合单体制备多组分聚酯的研究进展[J]. 中国科学(化学), 2021, 51(2): 144-153. |
Zhou Y C, Pang X, Chen X S. Recent progress in the preparation of multicomponent polyesters by selective catalysis from mixed monomers[J]. Scientia Sinica (Chimica), 2021, 51(2): 144-153. | |
15 | Ahrendt K A, Borths C J, MacMillan D W C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels-Alder reaction[J]. Journal of the American Chemical Society, 2000, 122(17): 4243-4244. |
16 | 樊丛笑, 梁嘉欣, 叶淑娴, 等. 不同序列结构的二氧化碳/环氧丙烷/邻苯二甲酸酐三元共聚物的可控合成及性能研究[J]. 高分子学报, 2022, 53(5): 497-504. |
Fan C X, Liang J X, Ye S X, et al. Study of the synthesis of CO2/propylene epoxide/phthalic anhydride terpolymers with different sequence structures and their properties[J]. Acta Polymerica Sinica, 2022, 53(5): 497-504. | |
17 | 梁嘉欣, 叶淑娴, 王拴紧, 等. 二氧化碳共聚物的序列结构控制及其结构与性能的关系[J]. 科学通报, 2021, 66(7): 798-815. |
Liang J X, Ye S X, Wang S J, et al. Sequence structure control of CO2-based copolymer and the relationship between structure and properties[J]. Chinese Science Bulletin, 2021, 66(7): 798-815. | |
18 | Hirschmann M, Andriani F, Fuoco T. Functional and degradable copolyesters by ring-opening copolymerization of epoxides and anhydrides[J]. European Polymer Journal, 2023, 183: 111766. |
19 | You H, Zhuo C W, Yan S, et al. CO2 deprotection-mediated switchable polymerization for precise construction of block copolymers[J]. Macromolecules, 2022, 55(24): 10980-10992. |
20 | Xu J X, Zhang P F, Yuan Y Y, et al. Elucidation of the alternating copolymerization mechanism of epoxides or aziridines with cyclic anhydrides in the presence of halide salts[J]. Angewandte Chemie International Edition, 2023, 62(14): e202218891. |
21 | Li H, Luo H T, Zhao J P, et al. Sequence-selective terpolymerization from monomer mixtures using a simple organocatalyst[J]. ACS Macro Letters, 2018, 7(12): 1420-1425. |
22 | Ji H Y, Wang B, Pan L, et al. One-step access to sequence-controlled block copolymers by self-switchable organocatalytic multicomponent polymerization[J]. Angewandte Chemie International Edition, 2018, 57(51): 16888-16892. |
23 | Paul S, Zhu Y Q, Romain C, et al. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates[J]. Chemical Communications, 2015, 51(30): 6459-6479. |
24 | Kou X H, Li Y Z, Shen Y, et al. Metal-free ring-opening alternating copolymerization of epoxides and cyclic anhydrides mediated by a ternary phosphazene base and carboxylic acids[J]. Macromolecular Chemistry and Physics, 2019, 220(24): 1900416. |
25 | Wang L B, Zhang J B, Zhao N, et al. Synthesis of tris-phosphazene bases with triazine as core and their applications for efficient ring-opening alternating copolymerization of epoxide and anhydride: notable effect of basicity and molecular size[J]. ACS Macro Letters, 2020, 9(9): 1398-1402. |
26 | Wang R B, Zhang J W, Yin Q, et al. Controlled ring-opening polymerization of O-carboxyanhydrides using a β-diiminate zinc catalyst[J]. Angewandte Chemie International Edition, 2016, 55(42): 13010-13014. |
27 | Vagenende M, Graulus G J, Delaey J, et al. Amorphous random copolymers of lacOCA and manOCA for the design of biodegradable polyesters with tuneable properties[J]. European Polymer Journal, 2019, 118: 685-693. |
28 | Sun Y Y, Jia Z W, Chen C J, et al. Alternating sequence controlled copolymer synthesis of α-hydroxy acids via syndioselective ring-opening polymerization of O-carboxyanhydrides using zirconium/hafnium alkoxide initiators[J]. Journal of the American Chemical Society, 2017, 139(31): 10723-10732. |
29 | Feng Q Y, Yang L, Zhong Y L, et al. Stereoselective photoredox ring-opening polymerization of O-carboxyanhydrides[J]. Nature Communications, 2018, 9(1): 1-10. |
30 | Li C, Dang Y F, Wang B, et al. Constructing ABA- and ABCBA-type multiblock copolyesters with structural diversity by organocatalytic self-switchable copolymerization[J]. Macromolecules, 2021, 54(13): 6171-6181. |
31 | Zhang J B, Wang L B, Liu S F, et al. A Lewis pair as organocatalyst for one-pot synthesis of block copolymers from a mixture of epoxide, anhydride, and CO2 [J]. Macromolecules, 2021, 54(2): 763-772. |
32 | Wang W J, Ye S X, Liang J X, et al. Architecting branch structure in terpolymer of CO2, propylene oxide and phthalic anhydride: an enhancement in thermal and mechanical performances[J]. Chinese Journal of Polymer Science, 2022, 40(5): 462-468. |
33 | Ye S X, Wang W J, Liang J X, et al. Metal-free approach for a one-pot construction of biodegradable block copolymers from epoxides, phthalic anhydride, and CO2 [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(48): 17860-17867. |
34 | Chidara V K, Boopathi S K, Hadjichristidis N, et al. Triethylborane-assisted synthesis of random and block poly(ester-carbonate)s through one-pot terpolymerization of epoxides, CO2, and cyclic anhydrides[J]. Macromolecules, 2021, 54(6): 2711-2719. |
35 | Ye S X, Ren Y S, Liang J X, et al. One-pot construction of random, gradient and triblock copolymers from CO2, epoxides and phthalic anhydride by metal-free catalyst[J]. Journal of CO2 Utilization, 2022, 65: 102223. |
36 | Liu S, Bai T W, Ni K, et al. Biased Lewis pairs: a general catalytic approach to ether-ester block copolymers with unlimited ordering of sequences[J]. Angewandte Chemie International Edition, 2019, 58(43): 15478-15487. |
37 | Andrea K A, Wheeler M D, Kerton F M. Borane catalyzed polymerization and depolymerization reactions controlled by Lewis acidic strength[J]. Chemical Communications, 2021, 57(59): 7320-7322. |
38 | Kummari A, Pappuru S, Gupta P K, et al. Metal-free Lewis pair catalyst synergy for fully alternating copolymerization of norbornene anhydride and epoxides: biocompatible tests for derived polymers[J]. Materials Today Communications, 2019, 19: 306-314. |
39 | Liang J X, Ye S X, Wang S Y, et al. Biodegradable copolymers from CO2, epoxides, and anhydrides catalyzed by organoborane/tertiary amine pairs: high selectivity and productivity[J]. Macromolecules, 2022, 55(14): 6120-6130. |
40 | Zhu S S, Wang Y, Ding W Z, et al. Lewis pair catalyzed highly selective polymerization for the one-step synthesis of A z C y (AB) x C y A z pentablock terpolymers[J]. Polymer Chemistry, 2020, 11(10): 1691-1695. |
41 | Herzberger J, Niederer K, Pohlit H, et al. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation[J]. Chemical Reviews, 2016, 116(4): 2170-2243. |
42 | 张荣召, 徐鸿志, 胡冰洁. 二氧化碳基可降解塑料的合成、性能及应用[J]. 塑料, 2022, 51(6): 127-133, 151. |
Zhang R Z, Xu H Z, Hu B J. Synthesis, properties and application of carbon dioxide based degradable plastics[J]. Plastics, 2022, 51(6): 127-133, 151. | |
43 | Chen Y S, Wilson J A, Petersen S R, et al. Ring-opening copolymerization of maleic anhydride with functional epoxides: poly (propylene fumarate) analogues capable of post-polymerization modification[J]. Angewandte Chemie International Edition, 2018, 57(39): 12759-12764. |
44 | Singh G S, Mollet K, D'hooghe M, et al. Epihalohydrins in organic synthesis[J]. Chemical Reviews, 2013, 113(3): 1441-1498. |
45 | Zhang B R, Li H, Luo H T, et al. Ring-opening alternating copolymerization of epichlorohydrin and cyclic anhydrides using single- and two-component metal-free catalysts[J]. European Polymer Journal, 2020, 134: 109820. |
46 | Kwon G, Kim M, Jung W H, et al. Designing cooperative hydrogen bonding in polyethers with carboxylic acid pendants[J]. Macromolecules, 2021, 54(18): 8478-8487. |
47 | Xue Y N, Huang Z Z, Zhang J T, et al. Synthesis and self-assembly of amphiphilic poly(acrylic acid-b-DL-lactide) to form micelles for pH-responsive drug delivery[J]. Polymer, 2009, 50(15): 3706-3713. |
48 | Teng L J, Chen Y H, Jin M, et al. Weak hydrogen bonds lead to self-healable and bioadhesive hybrid polymeric hydrogels with mineralization-active functions[J]. Biomacromolecules, 2018, 19(6): 1939-1949. |
49 | Zhang R, Ruan H Z, Fu Q L, et al. A high strain, adhesive, self-healable poly (acrylic acid) hydrogel with temperature sensitivity as an epidermal sensor[J]. Materials Advances, 2020, 1(3): 329-333. |
50 | Wu J J, Yuk H, Sarrafian T L, et al. An off-the-shelf bioadhesive patch for sutureless repair of gastrointestinal defects[J]. Science Translational Medicine, 2022, 14(630): eabh2857. |
51 | Tian M, Chen X, Sun S T, et al. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery[J]. Nano Research, 2019, 12(5): 1121-1127. |
52 | Lee S M, Jung W H, Kim M, et al. Tailoring the interplay between two monomers in the properties of degradable polyesters synthesized via ring-opening alternating copolymerization[J]. ACS Macro Letters, 2023, 12(5): 590-597. |
53 | Zhang X Y, Fevre M, Jones G O, et al. Catalysis as an enabling science for sustainable polymers[J]. Chemical Reviews, 2018, 118(2): 839-885. |
54 | Wei J N, Diaconescu P L. Redox-switchable ring-opening polymerization with ferrocene derivatives[J]. Accounts of Chemical Research, 2019, 52(2): 415-424. |
55 | You L X, Ling J. Janus polymerization[J]. Macromolecules, 2014, 47(7): 2219-2225. |
56 | Qi M, Dong Q, Wang D W, et al. Electrochemically switchable ring-opening polymerization of lactide and cyclohexene oxide[J]. Journal of the American Chemical Society, 2018, 140(17): 5686-5690. |
57 | Li J, Liu Y, Ren W M, et al. Asymmetric alternating copolymerization of meso-epoxides and cyclic anhydrides: efficient access to enantiopure polyesters[J]. Journal of the American Chemical Society, 2016, 138(36): 11493-11496. |
58 | Ji H Y, Wang B, Pan L, et al. Lewis pairs for ring-opening alternating copolymerization of cyclic anhydrides and epoxides[J]. Green Chemistry, 2018, 20(3): 641-648. |
59 | Fieser M E, Sanford M J, Mitchell L A, et al. Mechanistic insights into the alternating copolymerization of epoxides and cyclic anhydrides using a (salph)AlCl and iminium salt catalytic system[J]. Journal of the American Chemical Society, 2017, 139(42): 15222-15231. |
60 | Li J, Ren B H, Chen S Y, et al. Development of highly enantioselective catalysts for asymmetric copolymerization of meso-epoxides and cyclic anhydrides: subtle modification resulting in superior enantioselectivity[J]. ACS Catalysis, 2019, 9(3): 1915-1922. |
61 | Zheng L L, Feng J B, Xie H Y, et al. Organocatalytic synthesis of sugar-derived polyesters via ring-opening alternating copolymerization of anhydrosugar oxetane and anhydrides[J]. Journal of Polymer Science, 2023, 61(14): 1430-1438. |
62 | Ji H Y, Song D P, Wang B, et al. Organic Lewis pairs for selective copolymerization of epoxides with anhydrides to access sequence-controlled block copolymers[J]. Green Chemistry, 2019, 21(22): 6123-6132. |
63 | Zhao N, Ren C L, Shen Y, et al. Facile synthesis of aliphatic ω-pentadecalactone containing diblock copolyesters via sequential ROP with L-lactide, ε-caprolactone, and δ-valerolactone catalyzed by cyclic trimeric phosphazene base with inherent tribasic characteristics[J]. Macromolecules, 2019, 52(3): 1083-1091. |
64 | Shen Y, Zhao Z C, Li Y X, et al. A facile method to prepare high molecular weight bio-renewable poly(γ-butyrolactone) using a strong base/urea binary synergistic catalytic system[J]. Polymer Chemistry, 2019, 10(10): 1231-1237. |
65 | Zhang J B, Wang L, Liu S F B, et al. Phosphazene/Lewis acids as highly efficient cooperative catalyst for synthesis of high-molecular-weight polyesters by ring-opening alternating copolymerization of epoxide and anhydride[J]. Journal of Polymer Science, 2020, 58(6): 803-810. |
66 | Lin L M, Liang J X, Xu Y, et al. Fully alternating sustainable polyesters from epoxides and cyclic anhydrides: economical and metal-free dual catalysis[J]. Green Chemistry, 2019, 21(9): 2469-2477. |
67 | Zhou Y C, Hu C Y, Zhang T H, et al. One-pot synthesis of diblock polyesters by catalytic terpolymerization of lactide, epoxides, and anhydrides[J]. Macromolecules, 2019, 52(9): 3462-3470. |
68 | Xia X C, Suzuki R, Takojima K, et al. Smart access to sequentially and architecturally controlled block polymers via a simple catalytic polymerization system[J]. ACS Catalysis, 2021, 11(10): 5999-6009. |
69 | Romain C, Zhu Y Q, Dingwall P, et al. Chemoselective polymerizations from mixtures of epoxide, lactone, anhydride, and carbon dioxide[J]. Journal of the American Chemical Society, 2016, 138(12): 4120-4131. |
70 | Dharmaratne N U, Pothupitiya J U, Kiesewetter M K. The mechanistic duality of (thio)urea organocatalysts for ring-opening polymerization[J]. Organic & Biomolecular Chemistry, 2019, 17(13): 3305-3313. |
71 | Xu Y H, Lin L M, Zeng S S, et al. Synthesis of polylactide nanocomposites using an α-zirconium phosphate nanosheet-supported zinc catalyst via in situ polymerization[J]. ACS Applied Polymer Materials, 2019, 1(6): 1382-1389. |
72 | Lin L M, Chen X, Xiang H X, et al. Construction of triblock copolyesters via one-step switchable terpolymerization of epoxides, and ε-caprolactone using dual urea/organic base catalysts[J]. Polymer Chemistry, 2022, 13(6): 801-807. |
73 | Lin L M, Xu Y H, Shen M, et al. A potential alternative to polystyrene: ring-opening terpolymerization of different epoxides with phthalic anhydride using metal-free dual catalysts[J]. Chinese Journal of Polymer Science, 2021, 39(3): 337-343. |
74 | Shen W W, Wang R J, Fan Q Q, et al. Natural polyphenol inspired polycatechols for efficient siRNA delivery[J]. CCS Chemistry, 2020, 2(3): 146-157. |
75 | Zhao Z C, Shen Y, Kou X H, et al. Organocatalytic ring-opening copolymerization of biorenewable α-methylene-γ-butyrolactone toward functional copolyesters: preparation and composition dependent thermal properties[J]. Macromolecules, 2020, 53(9): 3380-3389. |
76 | Zhu X J, Wang R, Kou X H, et al. Organocatalytic ring-opening alternating copolymerization of epoxides and cyclic anhydrides by a simple organobase/urea binary catalyst[J]. Macromolecular Chemistry and Physics, 2021, 222(14): 2100214. |
77 | Lidston C A L, Severson S M, Abel B A, et al. Multifunctional catalysts for ring-opening copolymerizations[J]. ACS Catalysis, 2022, 12(18): 11037-11070. |
78 | Xie R, Zhang Y Y, Yang G W, et al. Record productivity and unprecedented molecular weight for ring-opening copolymerization of epoxides and cyclic anhydrides enabled by organoboron catalysts[J]. Angewandte Chemie International Edition, 2021, 60(35): 19253-19261. |
79 | Hui J W, Wang X W, Yao X Q, et al. A one-component phosphonium borane Lewis pair serves as a dual initiator and catalyst in the ring-opening alternating copolymerization of anhydrides and epoxides[J]. Polymer Chemistry, 2022, 13(47): 6551-6563. |
80 | Qiu H, Yang Z N, Köhler M, et al. Synthesis and solution self-assembly of poly(1,3-dioxolane)[J]. Macromolecules, 2019, 52(9): 3359-3366. |
81 | Abel B A, Snyder R L, Coates G W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals[J]. Science, 2021, 373(6556): 783-789. |
82 | Zhang X, Zhang C J, Zhang X H. A facile and unprecedented route to a library of thermostable formaldehyde-derived polyesters: highly active and selective copolymerization of cyclic acetals and anhydrides[J]. Angewandte Chemie International Edtion, 2022, 61(13): e202117316. |
83 | Song P F, Chen Y L, Li Y L, et al. A one-pot strategy to synthesize block copolyesters from monomer mixtures using a hydroxy-functionized ionic liquid[J]. Macromolecular Rapid Communications, 2020, 41(23): e2000436. |
84 | Xu J X, Xian A M, Li Z J, et al. A strained ion pair permits carbon dioxide fixation at atmospheric pressure by C—H H-bonding organocatalysis[J]. The Journal of Organic Chemistry, 2021, 86(4): 3422-3432. |
85 | Basterretxea A, Gabirondo E, Jehanno C, et al. Stereoretention in the bulk ROP of L-lactide guided by a thermally stable organocatalyst[J]. Macromolecules, 2021, 54(13): 6214-6225. |
86 | Hu L F, Zhang C J, Wu H L, et al. Highly active organic Lewis pairs for the copolymerization of epoxides with cyclic anhydrides: metal-free access to well-defined aliphatic polyesters[J]. Macromolecules, 2018, 51(8): 3126-3134. |
87 | Zhu X J, Kou X H. Organic bases and protic acids as binary catalysts for ring-opening alternating copolymerization of epoxides and cycle anhydrides[J]. Chemical Papers, 2022, 76(4): 2145-2152. |
[1] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[2] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
[3] | 张雅曼, 邢玉林, 蒋杰, 赵玲, 奚桢浩. PET/PEG共聚酯连续熔融终缩聚过程两相稳态模型分析[J]. 化工学报, 2022, 73(10): 4722-4733. |
[4] | 何起帆, 吴闽强, 李廷贤, 王如竹. 正十八烷/OBC/EG复合定型相变材料制备及热物性[J]. 化工学报, 2021, 72(S1): 539-545. |
[5] | 王宁, 惠磊, 陈美, 历伟, 周琦. POSS改性负载型Ziegler-Natta催化剂及其乙烯/1-己烯共聚反应[J]. 化工学报, 2021, 72(4): 2102-2112. |
[6] | 李秋霖, 罗理琼, 刘平伟, 李伯耿, 王文俊. 串级催化聚合制备线性低密度聚乙烯/聚烯烃热塑性弹性体[J]. 化工学报, 2021, 72(2): 841-851. |
[7] | 秦统, 奚桢浩, 赵玲, 袁渭康. 水溶性偶氮引发剂AIBA引发AN-MA-IA水相沉淀共聚合的研究[J]. 化工学报, 2021, 72(2): 1149-1155. |
[8] | 邹文奇, 陈通, 叶海木, 张淑景, 徐军, 郭宝华. 可生物降解聚酯的制备及性能研究进展[J]. 化工学报, 2021, 72(12): 6216-6231. |
[9] | 李锦锦, 吴优, 周寅宁, 罗正鸿. 两亲嵌段共聚物基高内相乳液模板的制备与应用研究进展[J]. 化工学报, 2021, 72(11): 5443-5454. |
[10] | 高宏娟,任伟民. 内酯和环氧烷烃共聚合成聚酯-聚醚共聚物的研究进展[J]. 化工学报, 2021, 72(1): 440-451. |
[11] | 邹树平, 姜镇涛, 王志才, 柳志强, 郑裕国. 环氧化物水解酶交联细胞聚集体催化合成(R)-环氧氯丙烷[J]. 化工学报, 2020, 71(9): 4238-4245. |
[12] | 赵小燕, 单国荣. RAFT聚合制备PMPS-b-PNIPAM嵌段共聚物及温敏性纳米粒子[J]. 化工学报, 2019, 70(10): 4080-4088. |
[13] | 崔玲娜, 刘跃军. PLA/PBAu嵌段共聚物合成工艺优化及降解性能[J]. 化工学报, 2018, 69(9): 4075-4082. |
[14] | 黄志辉, 刘进朝, 包永忠. 聚偏氟乙烯-b-聚乙烯基吡咯烷酮嵌段共聚物的制备和结构[J]. 化工学报, 2018, 69(2): 823-829. |
[15] | 徐锦超, 包永忠. 单电子转移-蜕化链转移活性自由基细乳液聚合制备PS-b-PBA-b-PS共聚物[J]. 化工学报, 2018, 69(2): 840-847. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 1217
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||