化工学报 ›› 2021, Vol. 72 ›› Issue (2): 841-851.DOI: 10.11949/0438-1157.20201529
李秋霖1(),罗理琼1,刘平伟1,2,李伯耿1,王文俊1,2()
收稿日期:
2020-10-30
修回日期:
2020-12-30
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
王文俊
作者简介:
李秋霖(1996—),男,硕士研究生,基金资助:
LI Qiulin1(),LUO Liqiong1,LIU Pingwei1,2,LI Bogeng1,WANG Wenjun1,2()
Received:
2020-10-30
Revised:
2020-12-30
Online:
2021-02-05
Published:
2021-02-05
Contact:
WANG Wenjun
摘要:
通过齐聚催化剂和共聚催化剂的有机结合和相互协同,可实现以乙烯为唯一单体的串级催化聚合,合成乙烯与α-烯烃共聚的线性低密度聚乙烯和聚烯烃热塑性弹性体,但开发高选择性、高共聚能力、适合高温聚合的串级聚合催化体系仍极具挑战。本文围绕不同类型的乙烯齐聚/聚合反应,评述了乙烯二聚、三聚、四聚及聚烯烃大单体合成技术及其相应的串级催化聚合的研究进展。迄今,大部分串级催化聚合是在较低的聚合反应温度下进行的,有限的串级催化体系适合高温聚合;乙烯二聚和三聚串级催化聚合可合成短支链较均一的乙烯与α-烯烃共聚物,但在乙烯四聚串级催化聚合中1-辛烯的选择性亟待提高;此外,通过聚烯烃大单体的串级催化聚合,可为具有特殊链拓扑结构的高性能聚烯烃热塑性弹性体的开发开拓新途径。
中图分类号:
李秋霖, 罗理琼, 刘平伟, 李伯耿, 王文俊. 串级催化聚合制备线性低密度聚乙烯/聚烯烃热塑性弹性体[J]. 化工学报, 2021, 72(2): 841-851.
LI Qiulin, LUO Liqiong, LIU Pingwei, LI Bogeng, WANG Wenjun. Preparation of linear low density polyethylenes/polyolefin thermoplastic elastomers by tandem polymerizations[J]. CIESC Journal, 2021, 72(2): 841-851.
1 | 任慧勇. 我国聚乙烯产业现状及未来发展分析[J]. 化工新型材料, 2020, 48(7): 47-51. |
Ren H Y. Current situation and future development analysis of PE in China[J]. New Chemical Materials, 2020, 48(7): 47-51. | |
2 | 冯永彬. 线性低密度聚乙烯的生产与应用[J]. 才智, 2013, (23): 252. |
Feng Y B. Production and application of linear low density polyethylene[J]. Ability and Wisdom, 2013, (23): 252. | |
3 | Bensason S, Minick J, Moet A, et al. Classification of homogeneous ethylene‐octene copolymers based on comonomer content[J]. Journal of Polymer Science Part B: Polymer Physics, 1996, 34(7): 1301-1315. |
4 | Spalding M A, Chatterjee A. Handbook of Industrial Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications and Markets[M]. New York: John Wiley & Sons Inc., 2017: 105-138. |
5 | 董博, 孙月明, 王媚, 等. 乙烯四聚合成1-辛烯研究新进展[J]. 高分子通报, 2013, (12): 38-43. |
Dong B, Sun Y M, Wang M, et al. Recent progresses of ethylene tetramerization toward 1-octene[J]. Polymer Bulletin, 2013, (12): 38-43. | |
6 | Beach D L, Kissin Y V. Dual functional catalysis for ethylene polymerization to branched polyethylene(Ⅰ): Evaluation of catalytic systems[J]. J. Polym. Sci.: Polym. Chem. Ed., 1984, 22: 3027-3042. |
7 | Lallemand M, Finiels A, Fajula F, et al. Catalytic oligomerization of ethylene over Ni-containing dealuminated Y zeolites[J]. Applied Catalysis A: General, 2006, 301(2): 196-201. |
8 | de Oliveira L L, Campedelli R R, Kuhn M C A, et al. Highly selective nickel catalysts for ethylene oligomerization based on tridentate pyrazolyl ligands[J]. Journal of Molecular Catalysis A: Chemical, 2008, 288(1/2): 58-62. |
9 | Wright W R H, Batsanov A S, Messinis A M, et al. Application of molybdenum bis (imido) complexes in ethylene dimerisation catalysis[J]. Dalton Transactions, 2012, 41(18): 5502-5511. |
10 | Ainooson M K, Guzei I A, Spencer L C, et al. Pyrazolylimine iron and cobalt, and pyrazolylamine nickel complexes: synthesis and evaluation of nickel complexes as ethylene oligomerization catalysts[J]. Polyhedron, 2013, 53: 295-303. |
11 | Tang X Y, Igarashi A, Sun W H, et al. Synthesis of (imido) vanadium (Ⅴ) complexes containing 8-(2, 6-dimethylanilide)-5, 6, 7-trihydroquinoline ligands: highly active catalyst precursors for ethylene dimerization[J]. Organometallics, 2014, 33(4): 1053-1060. |
12 | Wang T, Dong B, Chen Y H, et al. Nickel complexes incorporating pyrazole-based ligands for ethylene dimerization to 1-butylene[J]. Journal of Organometallic Chemistry, 2015, 798: 388-392. |
13 | Messinis A, Wright W R H, Batsanov A S, et al. Exploration of homogeneous ethylene dimerization mediated by tungsten mono (imido) complexes[J]. ACS Catalysis, 2018, 8(12): 11235-11248. |
14 | Messinis A M, Batsanov A S, Howard J A K, et al. Activated niobium and tantalum imido complexes: from tuneable polymerization to selective ethylene dimerization systems[J]. ChemCatChem, 2019, 11(6): 1756-1764. |
15 | Kuboki M, Nomura K. (Arylimido) niobium (V) complexes containing 2-pyridylmethylanilido ligand as catalyst precursors for ethylene dimerization that proceeds via cationic Nb (V) species[J]. Organometallics, 2019, 38(7): 1544-1559. |
16 | 薛祖源. Alphabutol工艺乙烯二聚制丁烯-1技术的评析[J]. 化工设计, 1996, (1): 8-12. |
Xue Z Y. Analysis of ethylene dimerization to 1-butene technology in Alphabutol process[J]. Chemical Engineering Design, 1996, (1): 8-12. | |
17 | McGuinness D S. Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond[J]. Chemical Reviews, 2011, 111(3): 2321-2341. |
18 | Forestière A, Olivier-Bourbigou H, Saussine L. Oligomerization of monoolefins by homogeneous catalysts[J]. ChemInform, 2012, 43(6): 649-667. |
19 | Carter C O. Surface conditioning in olefin dimerization reactors: US 4538018[P]. 1985-8-27. |
20 | Carter C O. Olefin dimerization: US 4242531[P]. 1980-12-30. |
21 | Schmidt R. Catalyst compositions for ethylene dimerization: US 0325274A1[P]. 2016-11-10. |
22 | Barnhart R W, Bazan G C, Mourey T. Synthesis of branched polyolefins using a combination of homogeneous metallocene mimics[J]. Journal of the American Chemical Society, 1998, 120(5): 1082-1083. |
23 | Komon Z J A, Bazan G C. Synthesis of branched polyethylene by tandem catalysis[J]. Macromolecular Rapid Communications, 2001, 22(7): 467-478. |
54 | Aluthge D C, Sattler A, Al-Harthi M A, et al. Cosupported tandem catalysts for production of linear low-density polyethylene from an ethylene-only feed[J]. ACS Catalysis, 2016, 6(10): 6581-6584. |
55 | Zhang J, Fan H, Li B G, et al. Modeling and kinetics of tandem polymerization of ethylene catalyzed by bis (2-dodecylsulfanyl-ethyl) amine-CrCl3 and Et (Ind)2ZrCl2[J]. Chemical Engineering Science, 2008, 63(8): 2057-2065. |
24 | 柳忠阳, 王军, 李秀华, 等. 一种新型制备 LLDPE 的双功能聚合催化体系 Ti(OBu-n)4/AIEt3-[Me2SiNtBuInd] ZrCI2/MAO[J]. 高等学校化学学报, 2001, 22(7): 1271-1273. |
Liu Z Y, Wang J, Li X H, et al. Preparation of LLDPE with dual-functional catalytic system Ti(OBu-n)4/AIEt3-[Me2SiNtBuInd] ZrCI2/MAO [J]. Chemical Research in Chinese Universities, 2001, 22(7): 1271-1273. | |
25 | Bianchini C, Frediani M, Giambastiani G, et al. Amorphous polyethylene by tandem action of cobalt and titanium single-site catalysts[J]. Macromolecular Rapid Communications, 2005, 26(15): 1218-1223. |
26 | 柳忠阳, 杨玲, 谭志俊, 等. 桥联茂金属催化剂用于双功能催化体系制备LLDPE的研究[J]. 高分子学报, 2001, (4): 471-475. |
56 | 郭松. 高性能乙烯/1-已烯共聚物的串级催化法制备及表征[D]. 杭州: 浙江大学, 2015. |
Guo S. High performance ethylene/1-hexene copolymers: preparation with tandem catalysis and characterization[D]. Hangzhou: Zhejiang University, 2015. | |
57 | Bollmann A, Blann K, Dixon J T, et al. Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities[J]. Journal of the American Chemical Society, 2004, 126(45): 14712-14713. |
58 | Rucklidge A J, McGuinness D S, Tooze R P, et al. Ethylene tetramerization with cationic chromium (Ⅰ) complexes[J]. Organometallics, 2007, 26(10): 2782-2787. |
59 | Kim S K, Kim T J, Chung J H, et al. Bimetallic ethylene tetramerization catalysts derived from chiral DPPDME ligands: syntheses, structural characterizations, and catalytic performance of [(DPPDME) CrCl3]2 (DPPDME= S, S- and R, R-chiraphos and meso-achiraphos)[J]. Organometallics, 2010, 29(22): 5805-5811. |
60 | Shaikh Y, Albahily K, Sutcliffe M, et al. A highly selective ethylene tetramerization catalyst[J]. Angewandte Chemie International Edition, 2012, 51(6): 1366-1369. |
61 | Zhang L, Meng X, Chen Y, et al. Chromium-based ethylene tetramerization catalysts supported by silicon‐bridged diphosphine ligands: further combination of high activity and selectivity[J]. ChemCatChem, 2017, 9(1): 76-79. |
62 | Kim E H, Lee H M, Jeong M S, et al. Methylaluminoxane-free chromium catalytic system for ethylene tetramerization[J]. ACS Omega, 2017, 2(3): 765-773. |
63 | Liu L, Liu Z, Cheng R, et al. Unraveling the effects of H2, N substituents and secondary ligands on Cr/PNP-catalyzed ethylene selective oligomerization[J]. Organometallics, 2018, 37(21): 3893-3900. |
64 | Alam F, Zhang L, Wei W, et al. Catalytic systems based on chromium (Ⅲ) silylated-diphosphinoamines for selective ethylene tri-/tetramerization[J]. ACS Catalysis, 2018, 8(11): 10836-10845. |
65 | Blann K, Bollmann A, Dixon J T, et al. Tetramerization of olefins: US 7511183[P]. 2009-3-31. |
66 | Zoricak P, Brown S J, Chisholm P S. Continuous ethylene tetramerization process: US 9688588[P]. 2017-6-27. |
67 | de Wet‐Roos D, du Toit A, Joubert D J. Homogeneous tandem catalysis of the bis‐(diphenylphosphino)‐amine/chromium tetramerization catalyst with metallocene catalysts[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(23): 6847-6856. |
68 | Jiang T, Huang Z, Luo M, et al. Preparation of ethylene/1‐octene copolymers from ethylene stock with tandem catalytic system[J]. Journal of Applied Polymer Science, 2008, 107(5): 3071-3075. |
69 | Resconi L, Piemontesi F, Franciscono G, et al. Olefin polymerization at bis (pentamethylcyclopentadienyl) zirconium and-hafnium centers: chain-transfer mechanisms[J]. Journal of the American Chemical Society, 1992, 114(3): 1025-1032. |
70 | Shiono T, Azad S M, Ikeda T. Copolymerization of atactic polypropene macromonomer with propene by an isospecific metallocene catalyst[J]. Macromolecules, 1999, 32(18): 5723-5727. |
71 | Park S, Wang W J, Zhu S. Continuous solution copolymerization of ethylene with propylene using a constrained geometry catalyst system[J]. Macromolecular Chemistry and Physics, 2000, 201(16): 2203-2209. |
72 | Cherian A E, Lobkovsky E B, Coates G W. Synthesis of allyl-terminated syndiotactic polypropylene: macromonomers for the synthesis of branched polyolefins[J]. Macromolecules, 2005, 38(15): 6259-6268. |
73 | Terao H, Ishii S, Saito J, et al. Phenoxycycloalkylimine ligated zirconium complexes for ethylene polymerization: formation of vinyl-terminated low molecular weight polyethylenes with high efficiency[J]. Macromolecules, 2006, 39(25): 8584-8593. |
74 | Contrella N D, Sampson J R, Jordan R F. Copolymerization of ethylene and methyl acrylate by cationic palladium catalysts that contain phosphine-diethyl phosphonate ancillary ligands[J]. Organometallics, 2014, 33(13): 3546-3555. |
75 | 张进, 杨飞, 王彬, 等. 双(β-酮亚胺)锆催化乙烯齐聚制备高分子量线性α-烯烃[J]. 高分子学报, 2020, 51(11): 1285-1294. |
Zhang J, Yang F, Wang B, et al. Efficient oligomerization of ethylene to linear α-olefins with high molecular weight by bis(β -ketiminato) zirconium catalysts[J]. Acta Polymerica Sinica, 2020, 51(11): 1285-1294. | |
76 | Sperber O, Kaminsky W. Synthesis of long-chain branched comp-structured polyethylene from ethylene by tandem action of two single-site catalysts[J]. Macromolecules, 2003, 36(24): 9014-9019. |
77 | Kolodka E, Wang W J, Zhu S, et al. Copolymerization of propylene with poly (ethylene-co-propylene) macromonomer and branch chain-length dependence of rheological properties[J]. Macromolecules, 2002, 35(27): 10062-10070. |
78 | Whitney P M, Zhu S. Differential scanning calorimetry of copolymer of isotactic polypropylene backbone with grafted poly (ethylene‐co‐propylene) branches[J]. Journal of Applied Polymer Science, 2006, 99(6): 3380-3388. |
79 | Kolodka E, Wang W J, Zhu S, et al. Synthesis and characterization of long-chain-branched polyolefins with metallocene catalysts: copolymerization of ethylene with poly (ethylene-co-propylene) macromonomer[J]. Macromolecular Rapid Communications, 2003, 24(4): 311-315. |
80 | Ohtaki H, Deplace F, Vo G D, et al. Allyl-terminated polypropylene macromonomers: a route to polyolefin elastomers with excellent elastic behavior[J]. Macromolecules, 2015, 48(20): 7489-7494. |
81 | Zhang K, Liu P, Wang W J, et al. Preparation of comb-shaped polyolefin elastomers having ethylene/1-octene copolymer backbone and long chain polyethylene branches via a tandem metallocene catalyst system[J]. Macromolecules, 2018, 51(21): 8790-8799. |
82 | Jones D J, Gibson V C, Green S M, et al. Discovery and optimization of new chromium catalysts for ethylene oligomerization and polymerization aided by high-throughput screening[J]. Journal of the American Chemical Society, 2005, 127(31): 11037-11046. |
83 | Komon Z J A, Diamond G M, Leclerc M K, et al. Triple tandem catalyst mixtures for the synthesis of polyethylenes with varying structures[J]. Journal of the American Chemical Society, 2002, 124(51): 15280-15285. |
26 | Liu Z Y, Yang L, Tan Z J, et al. Preparation of LLDPE using a dual functional catalytic system of Ti(OBu)4-metallocene/B(C6F5)3-AlEt3[J]. Acta Polymerica Sinica, 2001, (4): 471-475. |
27 | Komon Z J A, Bu X, Bazan G C. Synthesis of butene- ethylene and hexene- butene- ethylene copolymers from ethylene via tandem action of well-defined homogeneous catalysts[J]. Journal of the American Chemical Society, 2000, 122(8): 1830-1831. |
28 | 柳忠阳, 王军, 徐德民, 等. 载体茂金属用于原位聚合反应制备LLDPE研究[J]. 高分子学报, 2001, (4): 509-512. |
Liu Z Y, Wang J, Xu D M, et al. Study on polymerization for LLDPE by combining supported metallocene and Ti(On-Bu)4 as catalysts[J]. Acta Polymerica Sinica, 2001, (4): 509-512. | |
29 | Bianchini C, Giambastiani G, Meli A, et al. LLDPE with exclusively ethyl branches by tandem catalysis with single-site Zr(Ⅳ)/Co(Ⅱ) catalysts[J]. Topics in Catalysis, 2008, 48(1/2/3/4): 107-113. |
30 | Carter A, Cohen S A, Cooley N A, et al. High activity ethylene trimerisation catalysts based on diphosphine ligands[J]. Chemical Communications, 2002, (8): 858-859. |
31 | Mahomed H, Bollmann A, Dixon J T, et al. Ethylene trimerisation catalyst based on substituted cyclopentadienes[J]. Applied Catalysis A: General, 2003, 255(2): 355-359. |
32 | McGuinness D S, Wasserscheid P, Keim W, et al. First Cr (Ⅲ)- SNS complexes and their use as highly efficient catalysts for the trimerization of ethylene to 1-hexene[J]. Journal of the American Chemical Society, 2003, 125(18): 5272-5273. |
33 | Jiang T, Ji R, Chen H, et al. Effect of alkylaluminum activators on ethylene trimerization based on 2, 5‐DMP/Cr (Ⅲ)/TCE catalyst system[J]. Chinese Journal of Chemistry, 2011, 29(6): 1149-1153. |
34 | Ahmadi E, Mohamadnia Z, Haghighi M N. High productive ethylene trimerization catalyst based on CrCl3/SNS ligands[J]. Catalysis Letters, 2011, 141(8): 1191. |
35 | Azimnavahsi L, Mohamadnia Z. Optimization of ethylene trimerization using catalysts based on TiCl3/half‐sandwich ligands[J]. Applied Organometallic Chemistry, 2019, 33(2): e4666. |
36 | Cheredilin D N, Sheloumov A M, Senin A A, et al. Catalytic systems for production of 1-hexene by selective ethylene trimerization[J]. Petroleum Chemistry, 2020, 60(1): 55-68. |
37 | Briggs J R. Process for trimerization: US 4668838[P]. 1987-5-26. |
38 | Knudsen R D, Freeman J W. Catalyst and processes for olefin trimerization: US 0053742A1[P]. 2001-12-20. |
39 | Wu F J. Ethylene trimerization: US 5811618[P]. 1998-9-22. |
40 | Gao X, Carter C A G, Henderson L D. Trimerization: US 8252955[P]. 2012-8-28. |
41 | 周一兵. 1-己烯研发: 打破国外垄断, 促进我国塑料工业发展[J]. 中国石化, 2016, (2): 60-61. |
Zhou Y B. Research and development of 1-hexene: breaking foreign monopoly and promoting the development of China's plastics industry[J]. Sinopec Monthly, 2016, (2): 60-61. | |
42 | 祁彦平, 隋军龙, 吴红飞, 等. 一种乙烯三聚用催化剂组合物及其应用: 107282114A [P]. 2017-10-24. |
Qi Y P, Sui J L, Wu H F, et al. Catalyst composition for ethylene trimerization and its application: 107282114A [P]. 2017-10-24. | |
43 | 刘革. 1-己烯生产技术进展与市场分析[J]. 石油化工技术与经济, 2019, 35(6): 8-11. |
Liu G. Recent progress in synthesis technology and market situation of 1-hexene[J]. Technology & Economics in Petrochemicals, 2019, 35(6): 8-11. | |
44 | 李连鹏, 宋延安, 王书卫, 等. 乙烯/1-丁烯和乙烯/1-己烯共聚管材料的结构研究[J]. 弹性体, 2019, 29(6): 30-34. |
Li L P, Song Y A, Wang S W, et al. Structure of ethylene/1-butene and ethylene/1-hexene copolymer pipe materials[J]. China Elastomerics, 2019, 29(6): 30-34. | |
45 | Ye Z, AlObaidi F, Zhu S. A tandem catalytic system for the synthesis of ethylene-hex-1-ene copolymers from ethylene stock[J]. Macromolecular Rapid Communications, 2004, 25(5): 647-652. |
46 | Alobaidi F, Ye Z, Zhu S. Direct synthesis of linear low‐density polyethylene of ethylene/1‐hexene from ethylene with a tandem catalytic system in a single reactor[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(17): 4327-4336. |
47 | McGuinness D S, Wasserscheid P, Keim W, et al. Novel Cr-PNP complexes as catalysts for the trimerisation of ethylene[J]. Chemical Communications, 2003, (3): 334-335. |
48 | de Wet-Roos D, Dixon J T. Homogeneous tandem catalysis of bis (2-decylthioethyl) amine- chromium trimerization catalyst in combination with metallocene catalysts[J]. Macromolecules, 2004, 37(25): 9314-9320. |
49 | Zhang J, Li B G, Fan H, et al. Synthesis of ethylene‐1‐hexene copolymers from ethylene stock by tandem action of bis (2‐dodecylsulfanyl‐ethyl) amine‐CrCl3 and Et (Ind)2ZrCl2[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(16): 3562-3569. |
50 | Guo S, Fan H, Bu Z, et al. Tandem action of SNS-Cr and CGC-Ti in preparation of ethylene-1-hexene copolymers from ethylene feedstock[J]. Macromolecular Chemistry and Physics, 2014, 215(17): 1661-1667. |
51 | Guo S, Fan H, Bu Z, et al. High temperature high pressure tandem polymerization of ethylene for synthesis of ethylene-1-hexene copolymers from single reactor with SNS-Cr and CGC-Ti catalysts[J]. Macromolecular Reaction Engineering, 2015, 9(1): 32-39. |
52 | Zhang J, Fan H, Li B G, et al. Effect of catalysts supporting on tandem polymerization of ethylene stock in synthesis of ethylene- 1-hexene copolymer[J]. Industrial & Engineering Chemistry Research, 2008, 47(15): 5369-5375. |
53 | Karbach F F, Macko T, Duchateau R. Preparation of ethylene/1-hexene copolymers from ethylene using a fully silica-supported tandem catalyst system[J]. Macromolecules, 2016, 49(4): 1229-1241. |
[1] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[2] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[3] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[4] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[5] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[6] | 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101. |
[7] | 王雪松, 曾祥宇, 薄翠梅, 汤舒淇, 董超, 李俊, 张泉灵, 金晓明, 叶胜利. PTFE间歇聚合反应过程变周期动态经济优化控制[J]. 化工学报, 2022, 73(9): 3973-3982. |
[8] | 胡宏龙, 郑致刚, 朱为宏. 基于光控二芳基乙烯的手性向列相液晶体系研究进展[J]. 化工学报, 2022, 73(8): 3381-3393. |
[9] | 王磊, 蒋勇, 钟达忠, 李佳元, 郝根彦, 赵强, 李晋平. 碳化的MOF用于电催化还原二氧化碳制备乙烯和乙醇[J]. 化工学报, 2022, 73(8): 3576-3585. |
[10] | 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077. |
[11] | 范小强, 黄正梁, 孙婧元, 王靖岱, 王晓飞, 胡晓波, 韩国栋, 阳永荣, 吴文清. 气液法流化床乙烯云聚合工艺开发及产品高性能化[J]. 化工学报, 2022, 73(6): 2742-2747. |
[12] | 葛世轶, 杨遥, 黄正梁, 孙婧元, 王靖岱, 阳永荣. 基于静电分选解析聚乙烯颗粒生长与形貌演变[J]. 化工学报, 2022, 73(4): 1585-1596. |
[13] | 王利霞, 毕肇杰, 史淼磊, 王晨, 王东方, 李倩. UHMWPE/PEG共混方式及配比对UHMWPE缠结行为及性能的影响[J]. 化工学报, 2022, 73(2): 933-940. |
[14] | 万丽, 梁德青. 一种可生物降解水合物动力学抑制剂的研究[J]. 化工学报, 2022, 73(2): 894-903. |
[15] | 黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||