1 |
Rosner F, Rao A, Samuelsen S. Economics of cell design and thermal management in solid oxide fuel cells under SOFC-GT hybrid operating conditions[J]. Energy Conversion and Management, 2020, 220: 112952.
|
2 |
He Q J, Yu J, Xu H R,et al. Thermal effects in H2O and CO2 assisted direct carbon solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(22): 12459-12475.
|
3 |
王源慧. 直接氨燃料电池中的阳极催化剂的研究[D]. 武汉: 中国地质大学, 2021.
|
|
Wang Y H. The study of anode catalysts for direct ammonia fuel cell[D]. Wuhan: China University of Geosciences, 2021.
|
4 |
Xu Q D, Guo Z J, Xia L C,et al. A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels[J]. Energy Conversion and Management, 2022, 253: 115175.
|
5 |
张新宝, 张超, 孟凡朋, 等. 固体氧化物燃料电池的研究进展[J]. 山东陶瓷,2021, 44(1): 9-11.
|
|
Zhang X B, Zhang C, Meng F P, et al. Research progress of solid oxide fuel cell[J]. Shandong Ceramics, 2021, 44(1): 9-11.
|
6 |
陈烁烁. 固体氧化物燃料电池产业的发展现状及展望[J]. 陶瓷学报,2020, 41(5): 627-632.
|
|
Chen S S. Development and prospects of solid oxide fuel cell industry[J]. Journal of Ceramics, 2020, 41(5): 627-632.
|
7 |
Kalib N S, Muchtar A, Somalu M R,et al. Influence of heat transfer on thermal stress development in solid oxide fuel cells: a review[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2019, 54(2): 175-184.
|
8 |
Zeng Z Z, Qian Y P, Zhang Y J, et al. A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks[J]. Applied Energy, 2020, 280: 115899.
|
9 |
Dillig M, Leimert J, Karl, J,et al. Planar high temperature heat pipes for SOFC/SOEC stack applications[J]. Fuel Cells, 2014, 14(3):479-488.
|
10 |
Dillig M, Plankenbühler T, Karl J. Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming[J]. Journal of Power Sources, 2018, 373:139-149.
|
11 |
Marocco P, Ferrero D, Lanzini A,et al. Benefits from heat pipe integration in H2/H2O fed SOFC systems[J]. Applied Energy, 2019, 241: 472-482.
|
12 |
Dillig M, Meyer T, Karl J. Integration of planar heat pipes to solid oxide cell short stacks[J]. Fuel Cells, 2015, 15(5): 742-748.
|
13 |
Venkataraman V. Thermal modelling and coupling of a heat pipe integrated desorber with a solid oxide fuel cell[J]. Applied Thermal Engineering, 2019, 147: 943-961.
|
14 |
Achenbach E. Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack[J]. Journal of Power Sources, 1994, 49(1/2/3): 333-348.
|
15 |
Manglik R M, Magar Y N. Heat and mass transfer in planar anode-supported solid oxide fuel cells: effects of interconnect fuel/oxidant channel flow cross section[J]. Journal of Thermal Science and Engineering Applications, 2015, 7(4): 041003.
|
16 |
Andersson M, Yuan J, Sundén B. SOFC cell design optimization using the finite element method based CFD approach[J]. Fuel Cells, 2014, 14(2): 177-188.
|
17 |
Gao J T, Li Q, Guo M M,et al. Improved electrochemical activity of Bi0.5Sr0.5FeO3- δ -Ce0.9Gd0.1O1.95 composite cathode electrocatalyst for solid oxide fuel cells[J]. Ceramics International, 2021, 47(1): 748-754.
|
18 |
Vijay P, Hosseini S, Tadé M O. A novel concept for improved thermal management of the planar SOFC[J]. Chemical Engineering Research and Design, 2013, 91(3): 560-572.
|
19 |
Chen D, Lu L, Li J,et al. Percolation micro-model to predict the effective properties of the composite electrode with poly-dispersed particle sizes[J]. Journal of Power Sources, 2011, 196(6): 3178-3185.
|
20 |
Chen D F, Lin Z J, Zhu H Y, et al. Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes[J]. Journal of Power Sources, 2009, 191(2): 240-252.
|
21 |
Zheng K Q, Ni M. Reconstruction of solid oxide fuel cell electrode microstructure and analysis of its effective conductivity[J]. Science Bulletin, 2016, 61(1):78-85.
|
22 |
Zheng K Q, Zhang Y X, Li L,et al. On the tortuosity factor of solid phase in solid oxide fuel cell electrodes[J]. International Journal of Hydrogen Energy, 2015, 40(1): 665-669.
|
23 |
Zheng K Q, Li L, Shen S L,et al. The tortuosity factor effect on solid oxide fuel cell performance[J]. Sustainable Energy Technologies and Assessments, 2020, 38: 100681.
|
24 |
Ni M, Leung M K H, Leung D Y C. Parametric study of solid oxide fuel cell performance[J]. Energy Conversion and Management, 2007, 48(5): 1525-1535.
|
25 |
Zheng K Q, Sun Q, Ni M. Local non-equilibrium thermal effects in solid oxide fuel cells with various fuels[J]. Energy Technology, 2013, 1(1):35-41.
|
26 |
Andersson M, Yuan J L, Sundén B. SOFC modeling considering electrochemical reactions at the active three phase boundaries[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 773-788.
|
27 |
Todd B, Young J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling[J]. Journal of Power Sources, 2002, 110(1): 186-200.
|
28 |
Zheng K Q, Li L, Ni M. Investigation of the electrochemical active thickness of solid oxide fuel cell anode[J]. International Journal of Hydrogen Energy, 2014, 39(24): 12904-12912.
|
29 |
Andersson M, Nakajima H, Kitahara T,et al. Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1008-1022.
|
30 |
Wu X J, Yang D N, Wang J H, et al. Temperature gradient control of a solid oxide fuel cell stack[J]. Journal of Power Sources, 2019, 414: 345-353.
|
31 |
Zheng K Q, Sun Y, Shen S L,et al. A novel cooler for the thermal management of solid oxide fuel cell stack[J]. Sustainable Energy Technologies and Assessments, 2021, 48: 101564.
|