化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3222-3231.DOI: 10.11949/0438-1157.20220272
魏琳1,2(),郭剑1,2,廖梓豪1,2,3,Dafalla Ahmed Mohmed1,2,蒋方明1,2()
收稿日期:
2022-03-01
修回日期:
2022-05-16
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
蒋方明
作者简介:
魏琳(1988—),女,博士,助理研究员,基金资助:
Lin WEI1,2(),Jian GUO1,2,Zihao LIAO1,2,3,Dafalla Ahmed Mohmed1,2,Fangming JIANG1,2()
Received:
2022-03-01
Revised:
2022-05-16
Online:
2022-07-05
Published:
2022-08-01
Contact:
Fangming JIANG
摘要:
空冷型氢燃料电池采用开放型阴极,具有自增湿、系统简单轻便等特点。为了揭示空气流量对输出性能的影响机制,对自组装的800 W空冷型燃料电池电堆进行了实验测试和数值分析,对比了不同空气风扇转速下电堆输出电压、净功率以及传质传热特性。结果表明:小电流条件下小空气流量可以保持电堆内较高的温度,减少活化损失,实现高净输出功率。然而,大电流条件下,小空气流量将导致电堆温度过高且分布不均匀。利用数值方法对组分和温度分布进行了可视化分析,结果表明低含水量引起的欧姆损失增加是限制输出功率的关键因素,通过提高风扇转速增加空气流量可以保证较好的冷却效果,从而提高含水量,减少欧姆损失。
中图分类号:
魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231.
Lin WEI, Jian GUO, Zihao LIAO, Dafalla Ahmed Mohmed, Fangming JIANG. Influence of air flow rate on the performance of air cooled hydrogen fuel cell stack[J]. CIESC Journal, 2022, 73(7): 3222-3231.
参数 | 数值 |
---|---|
扩散层/催化层孔隙率ε | 0.6/ 0.5[ |
催化层膜相体积分数εm | 0.2 |
扩散层/催化层渗透率K/m2 | 6.2×10-12/ 6.2×10-13[ |
H2/O2/水蒸气扩散系数D/(m2/s) | 1.1×10-4/ 3.2×10-5/ 4.35×10-5[ |
H2/O2/N2/水蒸气黏度μ/(Pa·s) | 9.88×10-6/ 2.3×10-5/ 2.01×10-5/ 1.12×10-5[ |
双极板/扩散层/催化层电导率σ/(S/m) | 1.4×106/ 300/ 300[ |
双极板/扩散层/催化层/质子交换膜热导率k/(W/(m·K)) | 16/ 1.7/ 0.27/ 0.16[ |
双极板/扩散层/催化层/质子交换膜热质量ρcp /(kJ/(m3·K)) | 4000/ 230/ 580/ 2300[ |
质子交换膜密度ρmem/(kg/m3) | 1980[ |
质子交换膜当量质量EW/(kg/mol) | 1.0[ |
环境温度/℃ | 28 |
H2/空气进口绝对压力/MPa | 0.15/ 0.1 |
表1 材料物性参数及工况条件
Table 1 Physical properties and working conditions
参数 | 数值 |
---|---|
扩散层/催化层孔隙率ε | 0.6/ 0.5[ |
催化层膜相体积分数εm | 0.2 |
扩散层/催化层渗透率K/m2 | 6.2×10-12/ 6.2×10-13[ |
H2/O2/水蒸气扩散系数D/(m2/s) | 1.1×10-4/ 3.2×10-5/ 4.35×10-5[ |
H2/O2/N2/水蒸气黏度μ/(Pa·s) | 9.88×10-6/ 2.3×10-5/ 2.01×10-5/ 1.12×10-5[ |
双极板/扩散层/催化层电导率σ/(S/m) | 1.4×106/ 300/ 300[ |
双极板/扩散层/催化层/质子交换膜热导率k/(W/(m·K)) | 16/ 1.7/ 0.27/ 0.16[ |
双极板/扩散层/催化层/质子交换膜热质量ρcp /(kJ/(m3·K)) | 4000/ 230/ 580/ 2300[ |
质子交换膜密度ρmem/(kg/m3) | 1980[ |
质子交换膜当量质量EW/(kg/mol) | 1.0[ |
环境温度/℃ | 28 |
H2/空气进口绝对压力/MPa | 0.15/ 0.1 |
占空比/% | 风扇功率/W |
---|---|
30 | 13.2 |
50 | 26.4 |
70 | 40.8 |
90 | 57.6 |
表2 不同占空比时的风扇功率
Table 2 Fan power at different duty ratio
占空比/% | 风扇功率/W |
---|---|
30 | 13.2 |
50 | 26.4 |
70 | 40.8 |
90 | 57.6 |
1 | Ajanovic A, Haas R. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector[J]. International Journal of Hydrogen Energy, 2021, 46(16): 10049-10058. |
2 | 赵思臣, 王奔, 谢玉洪, 等. 无外增湿质子交换膜燃料电池线性温度扫描实验[J]. 中国电机工程学报, 2014, 34(26): 4528-4533. |
Zhao S C, Wang B, Xie Y H, et al. Linear temperature sweep experimental study on proton exchange membrane fuel cell without external humidification[J]. Proceedings of the CSEE, 2014, 34(26): 4528-4533. | |
3 | 宇高义郎, 许竞莹, 王国卓, 等. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282. |
Utaka Y, Xu J Y, Wang G Z, et al. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells[J]. CIESC Journal, 2021, 72(4): 2276-2282. | |
4 | 张文静, 李静, 魏子栋. 燃料电池空气电极的孔道结构调控[J]. 化工学报, 2020, 71(10): 4553-4574. |
Zhang W J, Li J, Wei Z D. Strategies for tuning porous structures of air electrode in fuel cells[J]. CIESC Journal, 2020, 71(10):4553-4574. | |
5 | Kurnia J C, Chaedir B A, Sasmito A P, et al. Progress on open cathode proton exchange membrane fuel cell: performance, designs, challenges and future directions[J]. Applied Energy, 2021, 283: 116359. |
6 | 张晓辉, 刘莉, 戴月领. 燃料电池无人机能源管理与飞行状态耦合[J]. 航空学报, 2019, 40(7): 222793. |
Zhang X H, Liu L, Dai Y L. Coupling effect of energy management and flight state for fuel cell powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 222793. | |
7 | Sagar A, Chugh S, Sonkar K, et al. A computational analysis on the operational behaviour of open-cathode polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(58): 34125-34138. |
8 | Luo L Z, Huang B, Cheng Z Y, et al. Improved water management by alternating air flow directions in a proton exchange membrane fuel cell stack[J]. Journal of Power Sources, 2020, 466: 228311. |
9 | D'Souza C, Apicella M, El-kharouf A, et al. Thermal characteristics of an air-cooled open-cathode proton exchange membrane fuel cell stack via numerical investigation[J]. International Journal of Energy Research, 2020, 44(14): 11597-11613. |
10 | De las Heras A, Vivas F J, Segura F, et al. Air-cooled fuel cells: keys to design and build the oxidant/cooling system[J]. Renewable Energy, 2018, 125: 1-20. |
11 | Yuan W W, Ou K, Kim Y B. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization[J]. Applied Thermal Engineering, 2020, 167: 114715. |
12 | Hu M, Zhao R, Pan R, et al. Disclosure of the internal transport phenomena in an air-cooled proton exchange membrane fuel cell (Part Ⅱ): Parameter sensitivity analysis[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18589-18603. |
13 | Ou K, Wang Y X, Kim Y B. Performance optimization for open-cathode fuel cell systems with overheating protection and air starvation prevention[J]. Fuel Cells, 2017, 17(3): 299-307. |
14 | Al-Anazi A, Wilberforce T, Khatib F N, et al. Performance evaluation of an air breathing polymer electrolyte membrane (PEM) fuel cell in harsh environments — a case study under Saudi Arabia's ambient condition[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23463-23479. |
15 | Dudek M, Lis B, Raźniak A, et al. Selected aspects of designing modular PEMFC stacks as power sources for unmanned aerial vehicles[J]. Applied Sciences, 2021, 11(2): 675. |
16 | Sasmito A P, Kurnia J C, Shamim T, et al. Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method[J]. Applied Energy, 2017, 185: 1225-1232. |
17 | Lee J, Gundu M H, Lee N, et al. Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11704-11713. |
18 | Zhao C, Xing S, Chen M, et al. Optimal design of cathode flow channel for air-cooled PEMFC with open cathode[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17771-17781. |
19 | Kang D G, Park C, Lim I S, et al. Performance enhancement of air-cooled open cathode polymer electrolyte membrane fuel cell with inserting metal foam in the cathode side[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27622-27631. |
20 | Pløger L J, Fallah R, Al Shakhshir S, et al. Improving the performance of an air-cooled fuel cell stack by a turbulence inducing grid[J]. ECS Transactions, 2018, 86(13): 77-87. |
21 | Song K, Fan Z X, Hu X, et al. Effect of adding vortex promoter on the performance improvement of active air-cooled proton exchange membrane fuel cells[J]. Energy, 2021, 223: 120104. |
22 | Zhao C, Xing S, Liu W, et al. Performance improvement for air-cooled open-cathode proton exchange membrane fuel cell with different design parameters of the gas diffusion layer[J]. Progress in Natural Science: Materials International, 2020, 30(6): 825-831. |
23 | Jian Q F, Luo L Z, Huang B, et al. Experimental study on the purge process of a proton exchange membrane fuel cell stack with a dead-end anode[J]. Applied Thermal Engineering, 2018, 142: 203-214. |
24 | Zhao J, Jian Q F, Huang Z P, et al. Experimental study on water management improvement of proton exchange membrane fuel cells with dead-ended anode by periodically supplying fuel from anode outlet[J]. Journal of Power Sources, 2019, 435: 226775. |
25 | Zhao J, Jian Q F, Luo L Z, et al. Dynamic behavior study on voltage and temperature of proton exchange membrane fuel cells[J]. Applied Thermal Engineering, 2018, 145: 343-351. |
26 | Liao Z H, Wei L, Dafalla A M, et al. Analysis of the impact of flow field arrangement on the performance of PEMFC with zigzag-shaped channels[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121900. |
27 | Wei L, Liao Z H, Suo Z B, et al. Numerical study of cold start performance of proton exchange membrane fuel cell with coolant circulation[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22160-22172. |
28 | Wei L, Liao Z H, Dafalla A M, et al. Performance investigation of proton exchange membrane fuel cell with dean flow channels[J]. Energy Technology, 2022, 10(3): 2100851. |
29 | Mao L, Wang C Y, Tabuchi Y. A multiphase model for cold start of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2007, 154(3): B341-B351. |
30 | Jiao K, Li X G. Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2009, 54(27): 6876-6891. |
31 | Luo Y Q, Guo Q, Du Q, et al. Analysis of cold start processes in proton exchange membrane fuel cell stacks[J]. Journal of Power Sources, 2013, 224: 99-114. |
32 | Um S, Wang C Y. Computational study of water transport in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2006, 156(2): 211-223. |
33 | Haynes W M. CRC Handbook of Chemistry and Physics[M]. 95th ed. Boca Raton: CRC Press, 2014. |
34 | Liao Z H, Wei L, Dafalla A M, et al. Numerical study of subfreezing temperature cold start of proton exchange membrane fuel cells with zigzag-channeled flow field[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120733. |
35 | Denki S. Cooling fan catalog[EB/OL]. 2021[2022-02-16]. . |
36 | Li M, Dai C H, Guo A, et al. Experimental study on dynamic voltage uniformity of a 2-kW air-cooled PEMFC[J]. Electrical Engineering, 2018, 100(4): 2725-2735. |
37 | Zhao R X, Hu M R, Pan R X, et al. Disclosure of the internal transport phenomena in an air-cooled proton exchange membrane fuel cell (Part Ⅰ): Model development and base case study[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23504-23518. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 615
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||