化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3222-3231.doi: 10.11949/0438-1157.20220272

• 能源和环境工程 • 上一篇    下一篇

空气流量对空冷燃料电池电堆性能的影响研究

魏琳1,2(),郭剑1,2,廖梓豪1,2,3,Dafalla Ahmed Mohmed1,2,蒋方明1,2()   

  1. 1.中国科学院广州能源研究所先进能源系统研究室,广东 广州 510640
    2.中国科学院可再生能源重点实验室,广东 广州 510640
    3.中国科学院大学,北京 100049
  • 收稿日期:2022-03-01 修回日期:2022-05-16 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 蒋方明 E-mail:weilin@ms.giec.ac.cn;jiangfm@ms.giec.ac.cn
  • 作者简介:魏琳(1988—),女,博士,助理研究员,weilin@ms.giec.ac.cn
  • 基金资助:
    国家自然科学基金项目(52006226);中国科学院与伊朗科技副总统办公室丝路科学基金联合研究资助项目(182344KYSB20210007);广州市科技计划项目(202102020356)

Influence of air flow rate on the performance of air cooled hydrogen fuel cell stack

Lin WEI1,2(),Jian GUO1,2,Zihao LIAO1,2,3,Dafalla Ahmed Mohmed1,2,Fangming JIANG1,2()   

  1. 1.Laboratory of Advanced Energy Systems, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640, Guangdong, China
    2.CAS Key Laboratory of Renewable Energy, Guangzhou 510640, Guangdong, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-03-01 Revised:2022-05-16 Published:2022-07-05 Online:2022-08-01
  • Contact: Fangming JIANG E-mail:weilin@ms.giec.ac.cn;jiangfm@ms.giec.ac.cn

摘要:

空冷型氢燃料电池采用开放型阴极,具有自增湿、系统简单轻便等特点。为了揭示空气流量对输出性能的影响机制,对自组装的800 W空冷型燃料电池电堆进行了实验测试和数值分析,对比了不同空气风扇转速下电堆输出电压、净功率以及传质传热特性。结果表明:小电流条件下小空气流量可以保持电堆内较高的温度,减少活化损失,实现高净输出功率。然而,大电流条件下,小空气流量将导致电堆温度过高且分布不均匀。利用数值方法对组分和温度分布进行了可视化分析,结果表明低含水量引起的欧姆损失增加是限制输出功率的关键因素,通过提高风扇转速增加空气流量可以保证较好的冷却效果,从而提高含水量,减少欧姆损失。

关键词: 燃料电池, 传热, 传质, 水热管理, 数值分析

Abstract:

The air cooled hydrogen fuel cell adopts an open cathode, which has the characteristics of self-humidification, simple and portable system, etc. However, its performance is not as well as a water cooled fuel cell. It is necessary to reveal the relationship between temperature and water content in the air cooled fuel cell in order to increase the output power. An 800 W air cooled fuel cell stack assembled in the laboratory was tested and analyzed. The voltage-current curve, net power, mass and heat transfer characteristics of the stack under different air fan speeds were compared. The experimental results show that at low currents the low flow rate under slow fan speed can maintain high temperature in the stack to reduce the activation loss of the catalyst, so that the stack could achieve large net output power. While under high current conditions, low flow rate will lead to excessive temperature and decrease the consistency. The distribution of oxygen concentration, water content and temperature in the fuel cell are visualized by numerical method. It is indicated the ohmic loss caused by low water content is the key factor limiting the output power, and by increasing fan speed and increasing the air flow, a better cooling effect can be ensured, thereby increasing the content water volume, reducing ohmic losses.

Key words: fuel cell, heat transfer, mass transfer, heat and water management, numerical analysis

中图分类号: 

  • TK 121

图1

测试系统示意图"

图2

测试电堆及压感纸测试结果"

表1

材料物性参数及工况条件"

参数数值
扩散层/催化层孔隙率ε0.6/ 0.5[29-30]
催化层膜相体积分数εm0.2
扩散层/催化层渗透率K/m26.2×10-12/ 6.2×10-13[31]
H2/O2/水蒸气扩散系数D/(m2/s)1.1×10-4/ 3.2×10-5/ 4.35×10-5[32]
H2/O2/N2/水蒸气黏度μ/(Pa·s)9.88×10-6/ 2.3×10-5/ 2.01×10-5/ 1.12×10-5[33]
双极板/扩散层/催化层电导率σ/(S/m)1.4×106/ 300/ 300[31, 33]
双极板/扩散层/催化层/质子交换膜热导率k/(W/(m·K))16/ 1.7/ 0.27/ 0.16[14, 34]
双极板/扩散层/催化层/质子交换膜热质量ρcp /(kJ/(m3·K))4000/ 230/ 580/ 2300[33]
质子交换膜密度ρmem/(kg/m3)1980[29]
质子交换膜当量质量EW/(kg/mol)1.0[27]
环境温度/℃28
H2/空气进口绝对压力/MPa0.15/ 0.1

图3

不同占空比时气体通道压力边界取值及燃料电池极化曲线"

图4

不同占空比时的电堆输出电压随电流爬升的变化曲线"

图5

不同占空比时的输出性能"

图6

不同加载电流下的相对功率"

表2

不同占空比时的风扇功率"

占空比/%风扇功率/W
3013.2
5026.4
7040.8
9057.6

图7

不同占空比时的电堆平均温度随电流爬升的变化曲线"

图8

d=50%温度随电流爬升的变化曲线"

图9

不同占空比时的温度标准差随电流爬升的变化曲线"

图10

不同占空比时的模拟结果"

1 Ajanovic A, Haas R. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector[J]. International Journal of Hydrogen Energy, 2021, 46(16): 10049-10058.
2 赵思臣, 王奔, 谢玉洪, 等. 无外增湿质子交换膜燃料电池线性温度扫描实验[J]. 中国电机工程学报, 2014, 34(26): 4528-4533.
Zhao S C, Wang B, Xie Y H, et al. Linear temperature sweep experimental study on proton exchange membrane fuel cell without external humidification[J]. Proceedings of the CSEE, 2014, 34(26): 4528-4533.
3 宇高义郎, 许竞莹, 王国卓, 等. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282.
Utaka Y, Xu J Y, Wang G Z, et al. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells[J]. CIESC Journal, 2021, 72(4): 2276-2282.
4 张文静, 李静, 魏子栋. 燃料电池空气电极的孔道结构调控[J]. 化工学报, 2020, 71(10): 4553-4574.
Zhang W J, Li J, Wei Z D. Strategies for tuning porous structures of air electrode in fuel cells[J]. CIESC Journal, 2020, 71(10):4553-4574.
5 Kurnia J C, Chaedir B A, Sasmito A P, et al. Progress on open cathode proton exchange membrane fuel cell: performance, designs, challenges and future directions[J]. Applied Energy, 2021, 283: 116359.
6 张晓辉, 刘莉, 戴月领. 燃料电池无人机能源管理与飞行状态耦合[J]. 航空学报, 2019, 40(7): 222793.
Zhang X H, Liu L, Dai Y L. Coupling effect of energy management and flight state for fuel cell powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 222793.
7 Sagar A, Chugh S, Sonkar K, et al. A computational analysis on the operational behaviour of open-cathode polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(58): 34125-34138.
8 Luo L Z, Huang B, Cheng Z Y, et al. Improved water management by alternating air flow directions in a proton exchange membrane fuel cell stack[J]. Journal of Power Sources, 2020, 466: 228311.
9 D'Souza C, Apicella M, El-kharouf A, et al. Thermal characteristics of an air-cooled open-cathode proton exchange membrane fuel cell stack via numerical investigation[J]. International Journal of Energy Research, 2020, 44(14): 11597-11613.
10 De las Heras A, Vivas F J, Segura F, et al. Air-cooled fuel cells: keys to design and build the oxidant/cooling system[J]. Renewable Energy, 2018, 125: 1-20.
11 Yuan W W, Ou K, Kim Y B. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization[J]. Applied Thermal Engineering, 2020, 167: 114715.
12 Hu M, Zhao R, Pan R, et al. Disclosure of the internal transport phenomena in an air-cooled proton exchange membrane fuel cell (Part Ⅱ): Parameter sensitivity analysis[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18589-18603.
13 Ou K, Wang Y X, Kim Y B. Performance optimization for open-cathode fuel cell systems with overheating protection and air starvation prevention[J]. Fuel Cells, 2017, 17(3): 299-307.
14 Al-Anazi A, Wilberforce T, Khatib F N, et al. Performance evaluation of an air breathing polymer electrolyte membrane (PEM) fuel cell in harsh environments — a case study under Saudi Arabia's ambient condition[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23463-23479.
15 Dudek M, Lis B, Raźniak A, et al. Selected aspects of designing modular PEMFC stacks as power sources for unmanned aerial vehicles[J]. Applied Sciences, 2021, 11(2): 675.
16 Sasmito A P, Kurnia J C, Shamim T, et al. Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method[J]. Applied Energy, 2017, 185: 1225-1232.
17 Lee J, Gundu M H, Lee N, et al. Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11704-11713.
18 Zhao C, Xing S, Chen M, et al. Optimal design of cathode flow channel for air-cooled PEMFC with open cathode[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17771-17781.
19 Kang D G, Park C, Lim I S, et al. Performance enhancement of air-cooled open cathode polymer electrolyte membrane fuel cell with inserting metal foam in the cathode side[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27622-27631.
20 Pløger L J, Fallah R, Al Shakhshir S, et al. Improving the performance of an air-cooled fuel cell stack by a turbulence inducing grid[J]. ECS Transactions, 2018, 86(13): 77-87.
21 Song K, Fan Z X, Hu X, et al. Effect of adding vortex promoter on the performance improvement of active air-cooled proton exchange membrane fuel cells[J]. Energy, 2021, 223: 120104.
22 Zhao C, Xing S, Liu W, et al. Performance improvement for air-cooled open-cathode proton exchange membrane fuel cell with different design parameters of the gas diffusion layer[J]. Progress in Natural Science: Materials International, 2020, 30(6): 825-831.
23 Jian Q F, Luo L Z, Huang B, et al. Experimental study on the purge process of a proton exchange membrane fuel cell stack with a dead-end anode[J]. Applied Thermal Engineering, 2018, 142: 203-214.
24 Zhao J, Jian Q F, Huang Z P, et al. Experimental study on water management improvement of proton exchange membrane fuel cells with dead-ended anode by periodically supplying fuel from anode outlet[J]. Journal of Power Sources, 2019, 435: 226775.
25 Zhao J, Jian Q F, Luo L Z, et al. Dynamic behavior study on voltage and temperature of proton exchange membrane fuel cells[J]. Applied Thermal Engineering, 2018, 145: 343-351.
26 Liao Z H, Wei L, Dafalla A M, et al. Analysis of the impact of flow field arrangement on the performance of PEMFC with zigzag-shaped channels[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121900.
27 Wei L, Liao Z H, Suo Z B, et al. Numerical study of cold start performance of proton exchange membrane fuel cell with coolant circulation[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22160-22172.
28 Wei L, Liao Z H, Dafalla A M, et al. Performance investigation of proton exchange membrane fuel cell with dean flow channels[J]. Energy Technology, 2022, 10(3): 2100851.
29 Mao L, Wang C Y, Tabuchi Y. A multiphase model for cold start of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2007, 154(3): B341-B351.
30 Jiao K, Li X G. Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2009, 54(27): 6876-6891.
31 Luo Y Q, Guo Q, Du Q, et al. Analysis of cold start processes in proton exchange membrane fuel cell stacks[J]. Journal of Power Sources, 2013, 224: 99-114.
32 Um S, Wang C Y. Computational study of water transport in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2006, 156(2): 211-223.
33 Haynes W M. CRC Handbook of Chemistry and Physics[M]. 95th ed. Boca Raton: CRC Press, 2014.
34 Liao Z H, Wei L, Dafalla A M, et al. Numerical study of subfreezing temperature cold start of proton exchange membrane fuel cells with zigzag-channeled flow field[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120733.
35 Denki S. Cooling fan catalog[EB/OL]. 2021[2022-02-16]. .
36 Li M, Dai C H, Guo A, et al. Experimental study on dynamic voltage uniformity of a 2-kW air-cooled PEMFC[J]. Electrical Engineering, 2018, 100(4): 2725-2735.
37 Zhao R X, Hu M R, Pan R X, et al. Disclosure of the internal transport phenomena in an air-cooled proton exchange membrane fuel cell (Part Ⅰ): Model development and base case study[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23504-23518.
[1] 赵健, 周兴超, 夏丹, 董航. 机械搅拌对原油储罐射流加热过程传热特性的影响规律研究[J]. 化工学报, 2023, 74(5): 1982-1999.
[2] 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913.
[3] 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981.
[4] 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548.
[5] 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826.
[6] 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734.
[7] 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569.
[8] 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488.
[9] 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246.
[10] 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072.
[11] 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293.
[12] 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081.
[13] 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697.
[14] 郭祥, 乔金硕, 王振华, 孙旺, 孙克宁. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302.
[15] 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!