化工学报 ›› 2024, Vol. 75 ›› Issue (4): 1096-1104.DOI: 10.11949/0438-1157.20231406
收稿日期:
2023-12-31
修回日期:
2024-03-11
出版日期:
2024-04-25
发布日期:
2024-06-06
通讯作者:
王凯
作者简介:
刘梦绮(2000—),女,博士研究生,liumengqi27@163.com
基金资助:
Mengqi LIU(), Kai WANG(
), Guangsheng LUO
Received:
2023-12-31
Revised:
2024-03-11
Online:
2024-04-25
Published:
2024-06-06
Contact:
Kai WANG
摘要:
微分散是微化工技术的重要组成部分,其装备和过程的复杂性使得相关研究受到诸多限制,传统思想指导下微分散基础研究以“设计-实验-模型”为思路,进展缓慢。近年来,人工智能方法因其强大的识别和回归能力在化工领域备受关注,人工智能辅助的微分散基础研究有利于形成微化工过程认识的新范式,促进微化工技术发展。本文介绍了人工智能方法的一般思路及其针对微分散研究的适用性,综述了人工智能技术在显微图像识别、液滴和气泡分散尺寸预测以及微分散过程控制和优化中的研究进展,对未来基于人工智能的微化工研究进行了展望。
中图分类号:
刘梦绮, 王凯, 骆广生. 基于人工智能的微分散基础研究[J]. 化工学报, 2024, 75(4): 1096-1104.
Mengqi LIU, Kai WANG, Guangsheng LUO. Fundamental research on microdispersion based on artificial intelligence[J]. CIESC Journal, 2024, 75(4): 1096-1104.
几何结构 | 半经验关联式 | 适用范围 | 文献 |
---|---|---|---|
T型微通道 | d/W =2.7(Cad/Cac)0.19 | 0.0003<Cac<0.1 | [ |
毛细管嵌入T型微通道 | d/W = 0.75(Qd/Qc)1/3Cac–1/5 | 0.002<Cac<0.01 | [ |
毛细管嵌入阶梯T型微通道 | d/W = 1.10(Qd/Qc)0.49(μd/μc)0.02 | Cac>0.07 | [ |
聚焦流微通道 | d/W = 0.88(Qd/Qc)0.18Cad–0.15 | 0.002<Cac<0.223 | [ |
聚焦流微通道 | d/W = 1.29(Qd/Qc)0.17Cac–0.1 | 0.00065<Cac<0.2 | [ |
表1 不同微分散通道中液滴尺寸的半经验关联式
Table 1 Semi-empirical correlations for droplet size in different microdispersion channel
几何结构 | 半经验关联式 | 适用范围 | 文献 |
---|---|---|---|
T型微通道 | d/W =2.7(Cad/Cac)0.19 | 0.0003<Cac<0.1 | [ |
毛细管嵌入T型微通道 | d/W = 0.75(Qd/Qc)1/3Cac–1/5 | 0.002<Cac<0.01 | [ |
毛细管嵌入阶梯T型微通道 | d/W = 1.10(Qd/Qc)0.49(μd/μc)0.02 | Cac>0.07 | [ |
聚焦流微通道 | d/W = 0.88(Qd/Qc)0.18Cad–0.15 | 0.002<Cac<0.223 | [ |
聚焦流微通道 | d/W = 1.29(Qd/Qc)0.17Cac–0.1 | 0.00065<Cac<0.2 | [ |
模型类型 | 输入特征 | 输出目标 | 数据量 | 尺寸预测准确性 | 文献 |
---|---|---|---|---|---|
ANN | Red、Rec、Cac、Cad | 液滴尺寸 | 742 | R2≈1 | [ |
ANFIS | Ca、μd/μc、Qd/Qc | 液滴尺寸 | 36 | R2=0.92 | [ |
ANFIS | 狭缝宽度Or、Qc、Qd、μc、μd、ρc | 液滴尺寸 | 51 | R2=0.96 | [ |
ANN | 聚合物浓度、Qc、Qd、微通道组合形式 | 液滴或颗粒尺寸 | 223 | R2=0.971 | [ |
ANN | Ca、Qd/Qc、连续相通道宽度Wc、分散相通道宽度Wd、Or、缩口长度L、下游通道宽度Wm、通道深度H | 液滴尺寸,生成频率 | 998 | R2=0.893(滴状流), R2=0.966(射流) | [ |
DNN | Wed、Wec、Ca、Qd/Qc、dl 、dg、dm、αlm、αgm | 气泡尺寸 | 854 | MRE=2.02% | [ |
BRANN XGBoost | Qc、Qd、γ、浓度比ϕ/ϕCMC | 液滴尺寸 | 468 | MAPE=3.9% | [ |
DNN Deep-FM | Ca、通道夹角、Qd/Qc、μd/μc | 液滴尺寸 | 298 | MRE=4.09% | [ |
ANN | 饱和度、Qc、Qd、通道夹角、W | 颗粒尺寸 | 71 | R2=0.89 | [ |
表2 应用于微分散过程预测的人工智能模型
Table 2 Artificial intelligence models applied to the prediction of microdispersion processes
模型类型 | 输入特征 | 输出目标 | 数据量 | 尺寸预测准确性 | 文献 |
---|---|---|---|---|---|
ANN | Red、Rec、Cac、Cad | 液滴尺寸 | 742 | R2≈1 | [ |
ANFIS | Ca、μd/μc、Qd/Qc | 液滴尺寸 | 36 | R2=0.92 | [ |
ANFIS | 狭缝宽度Or、Qc、Qd、μc、μd、ρc | 液滴尺寸 | 51 | R2=0.96 | [ |
ANN | 聚合物浓度、Qc、Qd、微通道组合形式 | 液滴或颗粒尺寸 | 223 | R2=0.971 | [ |
ANN | Ca、Qd/Qc、连续相通道宽度Wc、分散相通道宽度Wd、Or、缩口长度L、下游通道宽度Wm、通道深度H | 液滴尺寸,生成频率 | 998 | R2=0.893(滴状流), R2=0.966(射流) | [ |
DNN | Wed、Wec、Ca、Qd/Qc、dl 、dg、dm、αlm、αgm | 气泡尺寸 | 854 | MRE=2.02% | [ |
BRANN XGBoost | Qc、Qd、γ、浓度比ϕ/ϕCMC | 液滴尺寸 | 468 | MAPE=3.9% | [ |
DNN Deep-FM | Ca、通道夹角、Qd/Qc、μd/μc | 液滴尺寸 | 298 | MRE=4.09% | [ |
ANN | 饱和度、Qc、Qd、通道夹角、W | 颗粒尺寸 | 71 | R2=0.89 | [ |
图3 贝叶斯优化和深度神经网络结合的两步算法优化微流控平台中纳米颗粒的合成[54]
Fig.3 Two-step algorithm combining BO and DNN to optimize nanoparticle synthesis in microfluidic platforms[54]
1 | Kim B, Jeon T Y, Oh Y K, et al. Microfluidic production of semipermeable microcapsules by polymerization-induced phase separation[J]. Langmuir, 2015, 31(22): 6027-6034. |
2 | Porta R, Benaglia M, Puglisi A. Flow chemistry: recent developments in the synthesis of pharmaceutical products[J]. Organic Process Research & Development, 2016, 20(1): 2-25. |
3 | Matuła K, Rivello F, Huck W T S. Single-cell analysis using droplet microfluidics[J]. Advanced Biosystems, 2020, 4(1): e1900188. |
4 | Wang K, Luo G. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33. |
5 | Zhu P G, Wang L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2017, 17(1): 34-75. |
6 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166. |
7 | Anna S L, Bontoux N, Stone H A. Formation of dispersions using “flow focusing” in microchannels[J]. Applied Physics Letters, 2003, 82(3): 364. |
8 | Cramer C, Fischer P, Windhab E J. Drop formation in a co-flowing ambient fluid[J]. Chemical Engineering Science, 2004, 59(15): 3045-3058. |
9 | Wang K, Lu Y C, Xu J H, et al. Droplet generation in micro-sieve dispersion device[J]. Microfluidics and Nanofluidics, 2011, 10(5): 1087-1095. |
10 | Wang K, Lu Y C, Shao H W, et al. Heat-transfer performance of a liquid-liquid microdispersed system[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9754-9758. |
11 | Sheng L, Wang K, Deng J, et al. Gas-liquid microdispersion and microflow for carbon dioxide absorption and utilization: a review[J]. Current Opinion in Chemical Engineering, 2023, 40: 100917. |
12 | Lashkaripour A, Rodriguez C, Ortiz L, et al. Performance tuning of microfluidic flow-focusing droplet generators[J]. Lab on a Chip, 2019, 19(6): 1041-1053. |
13 | Faustino V, Catarino S O, Lima R, et al. Biomedical microfluidic devices by using low-cost fabrication techniques: a review[J]. Journal of Biomechanics, 2016, 49(11): 2280-2292. |
14 | Battat S, Weitz D A, Whitesides G M. An outlook on microfluidics: the promise and the challenge[J]. Lab on a Chip, 2022, 22(3): 530-536. |
15 | Kashid M N, Renken A, Kiwi-Minsker L. Influence of flow regime on mass transfer in different types of microchannels[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6906-6914. |
16 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
17 | Korczyk P M, van Steijn V, Blonski S, et al. Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels[J]. Nature Communications, 2019, 10: 2528. |
18 | 陈宇超, 崔永晋, 王凯, 等. 阶梯式T型微通道内液滴、气泡分散规律[J]. 化工学报, 2020, 71(1): 265-273. |
Chen Y C, Cui Y J, Wang K, et al. Droplet and bubble dispersion in step T-junction microchannel[J]. CIESC Journal, 2020, 71(1): 265-273. | |
19 | Shen C, Zheng Q B, Shang M J, et al. Using deep learning to recognize liquid–liquid flow patterns in microchannels[J]. AIChE Journal, 2020, 66(8): e16260. |
20 | Nunes J K, Tsai S S H, Wan J, et al. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis[J]. Journal of Physics D: Applied Physics, 2013, 46(11): 114002. |
21 | Christopher G F, Anna S L. Microfluidic methods for generating continuous droplet streams[J]. Journal of Physics D: Applied Physics, 2007, 40(19): R319-R336. |
22 | Asadi-Saghandi H, Karimi-Sabet J, Ghorbanian S, et al. Dimensionless analysis on liquid-liquid two-phase flow patterns in a numbered-up microfluidic device[J]. Chemical Engineering Journal, 2022, 429: 132428. |
23 | Odera T, Hirama H, Kuroda J, et al. Droplet formation behavior in a microfluidic device fabricated by hydrogel molding[J]. Microfluidics and Nanofluidics, 2014, 17(3): 469-476. |
24 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
25 | Li Y K, Liu G T, Xu J H, et al. A microdevice for producing monodispersed droplets under a jetting flow[J]. RSC Advances, 2015, 5(35): 27356-27364. |
26 | Fu T T, Ma Y G, Li H Z. Breakup dynamics of slender droplet formation in shear-thinning fluids in flow-focusing devices[J]. Chemical Engineering Science, 2016, 144: 75-86. |
27 | Lu Y T, Fu T T, Zhu C Y, et al. Scaling of the bubble formation in a flow-focusing device: role of the liquid viscosity[J]. Chemical Engineering Science, 2014, 105: 213-219. |
28 | Liu Z M, Zhao J, Pang Y, et al. Generation of droplets in the T-junction with a constriction microchannel[J]. Microfluidics and Nanofluidics, 2018, 22(11): 124. |
29 | Riordon J, Sovilj D, Sanner S, et al. Deep learning with microfluidics for biotechnology[J]. Trends in Biotechnology, 2019, 37(3): 310-324. |
30 | Srikanth S, Dubey S K, Javed A, et al. Droplet based microfluidics integrated with machine learning[J]. Sensors and Actuators A: Physical, 2021, 332: 113096. |
31 | McIntyre D, Lashkaripour A, Fordyce P, et al. Machine learning for microfluidic design and control[J]. Lab on a Chip, 2022, 22(16): 2925-2937. |
32 | Goda K, Lu H, Fei P, et al. Revolutionizing microfluidics with artificial intelligence: a new dawn for lab-on-a-chip technologies[J]. Lab on a Chip, 2023, 23(17): 3737-3740. |
33 | Isozaki A, Harmon J, Zhou Y Q, et al. AI on a chip[J]. Lab on a Chip, 2020, 20(17): 3074-3090. |
34 | Dedeloudi A, Weaver E, Lamprou D A. Machine learning in additive manufacturing & microfluidics for smarter and safer drug delivery systems[J]. International Journal of Pharmaceutics, 2023, 636: 122818. |
35 | Zhang S Y, Li H R, Wang K, et al. Accelerating intelligent microfluidic image processing with transfer deep learning: a microchannel droplet/bubble breakup case study[J]. Separation and Purification Technology, 2023, 315: 123703. |
36 | Chu A, Nguyen D, Talathi S S, et al. Automated detection and sorting of microencapsulation via machine learning[J]. Lab on a Chip, 2019, 19(10): 1808-1817. |
37 | Zhang S Y, Qin K, Huang X Y, et al. Insight into microdispersion flows with a novel video deep learning method[J]. Advanced Intelligent Systems, 2022, 4(11): 2200098. |
38 | Durve M, Bonaccorso F, Montessori A, et al. A fast and efficient deep learning procedure for tracking droplet motion in dense microfluidic emulsions[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2208): 20200400. |
39 | Mahdi Y, Daoud K. Microdroplet size prediction in microfluidic systems via artificial neural network modeling for water-in-oil emulsion formulation[J]. Journal of Dispersion Science and Technology, 2017, 38(10): 1501-1508. |
40 | Mottaghi S, Nazari M, Fattahi S M, et al. Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system[J]. Biomedical Microdevices, 2020, 22(3): 61. |
41 | Lashkaripour A, Goharimanesh M, Abouei Mehrizi A, et al. An adaptive neural-fuzzy approach for microfluidic droplet size prediction[J]. Microelectronics Journal, 2018, 78: 73-80. |
42 | Damiati S A, Rossi D, Joensson H N, et al. Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics[J]. Scientific Reports, 2020, 10: 19517. |
43 | Lashkaripour A, Rodriguez C, Mehdipour N, et al. Machine learning enables design automation of microfluidic flow-focusing droplet generation[J]. Nature Communications, 2021, 12: 25. |
44 | Chang Y, Sheng L, Wang J J, et al. A general neural network model co-driven by mechanism and data for the reliable design of gas-liquid T-junction microdevices[J]. Lab on a Chip, 2023, 23(22): 4888-4900. |
45 | Chagot L, Quilodrán-Casas C, Kalli M, et al. Surfactant-laden droplet size prediction in a flow-focusing microchannel: a data-driven approach[J]. Lab on a Chip, 2022, 22(20): 3848-3859. |
46 | Wang J X, Yu W, Wu Z, et al. Physics-based statistical learning perspectives on droplet formation characteristics in microfluidic cross-junctions[J]. Applied Physics Letters, 2022, 120(20): 204101. |
47 | Ali H S M, Blagden N, York P, et al. Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors[J]. European Journal of Pharmaceutical Sciences, 2009, 37(3): 514-522. |
48 | Khor J W, Jean N, Luxenberg E S, et al. Using machine learning to discover shape descriptors for predicting emulsion stability in a microfluidic channel[J]. Soft Matter, 2019, 15(6): 1361-1372. |
49 | Han S, Kim T, Kim D, et al. Use of deep learning for characterization of microfluidic soft sensors[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 873-880. |
50 | Dressler O J, Howes P D, Choo J, et al. Reinforcement learning for dynamic microfluidic control[J]. ACS Omega, 2018, 3(8): 10084-10091. |
51 | Gyimah N, Scheler O, Rang T, et al. Deep reinforcement learning-based digital twin for droplet microfluidics control[J]. Physics of Fluids, 2023, 35(8): 082020. |
52 | Fukada K, Seyama M. Microfluidic devices controlled by machine learning with failure experiments[J]. Analytical Chemistry, 2022, 94(19): 7060-7065. |
53 | Siemenn A E, Shaulsky E, Beveridge M, et al. A machine learning and computer vision approach to rapidly optimize multiscale droplet generation[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4668-4679. |
54 | Mekki-Berrada F, Ren Z K, Huang T, et al. Two-step machine learning enables optimized nanoparticle synthesis[J]. Computational Materials, 2021, 7: 55. |
55 | Probst P Boulesteix A L, Bischl B. Tunability: importance of hyperparameters of machine learning algorithms[J]. The Journal of Machine Learning Research, 2019, 20(1): 1934-1965. |
[1] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
[2] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[3] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
[4] | 曾玉娇, 肖炘, 杨刚, 张意博, 郑光明, 李防, 汪凤玲. 基于机理与数据混合驱动的湿法磷酸生产过程代理建模与优化[J]. 化工学报, 2024, 75(3): 936-944. |
[5] | 王娟, 李秀明, 邵炜涛, 丁续, 霍莹, 付连超, 白云宇, 李迪. 多孔板鼓泡塔流动与传质特性数值模拟[J]. 化工学报, 2024, 75(3): 801-814. |
[6] | 陈思睿, 毕景良, 王雷, 李元媛, 陆规. 气液两相流流型特征无监督提取的卷积自编码器:机理及应用[J]. 化工学报, 2024, 75(3): 847-857. |
[7] | 李宁, 朱朋飞, 张立峰, 卢栋臣. 基于非凸与不可分离正则化算法的电容层析成像图像重建[J]. 化工学报, 2024, 75(3): 836-846. |
[8] | 董益斌, 熊敬超, 王敬宇, 汪守康, 王亚飞, 黄群星. 融合激光雷达料位测算的锅炉燃烧优化模型预测控制[J]. 化工学报, 2024, 75(3): 924-935. |
[9] | 屠楠, 刘晓群, 王驰宇, 方嘉宾. 连续进出料鼓泡流化床停留时间分布的相似准则研究[J]. 化工学报, 2024, 75(2): 543-552. |
[10] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
[11] | 孙瑞, 田华, 吴子睿, 孙孝存, 舒歌群. 二氧化碳混合工质临界参数计算模型对比研究[J]. 化工学报, 2024, 75(2): 439-449. |
[12] | 温唯谷, 袁志宏, 王凯, 骆广生. 微分散液滴的光纤检测研究[J]. 化工学报, 2024, 75(1): 211-220. |
[13] | 钟东霖, 介素云, 杜淼, 潘鹏举, 单国荣. 聚苯基甲基硅氧烷分子量-折射率模型研究[J]. 化工学报, 2024, 75(1): 190-196. |
[14] | 麻雪怡, 刘克勤, 胡激江, 姚臻. POE溶液聚合反应器内混合与反应过程的CFD研究[J]. 化工学报, 2024, 75(1): 322-337. |
[15] | 尹刚, 钱中友, 曹文琦, 全鹏程, 许亨权, 颜非亚, 王民, 向禹, 向冬梅, 卢剑, 左玉海, 何文, 卢润廷. 基于Adaboost-PSO-SVM的铝电解槽健康状态诊断方法研究[J]. 化工学报, 2024, 75(1): 354-365. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 638
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 211
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||