化工学报 ›› 2024, Vol. 75 ›› Issue (1): 211-220.DOI: 10.11949/0438-1157.20230676
收稿日期:
2023-07-03
修回日期:
2023-10-16
出版日期:
2024-01-25
发布日期:
2024-03-11
通讯作者:
王凯
作者简介:
温唯谷(1999—),男,硕士研究生,wwg22@mails.tsinghua.edu.cn
基金资助:
Weigu WEN1(), Zhihong YUAN1, Kai WANG1,2(), Guangsheng LUO1,2
Received:
2023-07-03
Revised:
2023-10-16
Online:
2024-01-25
Published:
2024-03-11
Contact:
Kai WANG
摘要:
微分散是微化工技术的重要组成部分,传统利用显微摄像分析和统计微分散液滴的方法成本高,不易推广。提出了一种基于光纤传感的微分散液滴在线检测技术,该方法基于漫反射光纤、光纤传感器、数据采集卡和LabVIEW程序实现了微通道内液滴生成频率和长度的在线检测,满足0.21 mm以上直径液滴的检测,检测频率上限为500 Hz,当液滴通过光纤时间超过15 ms时,还可检测液滴长度。研究结果表明光纤直径和光纤传感器响应时间是影响该方法检测性能的主要因素,与相似平台对比,以较低的成本实现了较高检测性能。
中图分类号:
温唯谷, 袁志宏, 王凯, 骆广生. 微分散液滴的光纤检测研究[J]. 化工学报, 2024, 75(1): 211-220.
Weigu WEN, Zhihong YUAN, Kai WANG, Guangsheng LUO. Microdispersion droplet optical fiber detection[J]. CIESC Journal, 2024, 75(1): 211-220.
检测平台 | 平台组件及数量 | 频率检测上限/Hz | 可检测最小液滴直径/mm |
---|---|---|---|
本工作 | 光纤(1根)、数字光纤传感器(1个) | 500 | 0.21 |
文献[ | 光纤(2根)、LED光源(1个)、光电传感器(1个) | 200 | 0.15 |
文献[ | 激光光源(1个)、透镜(1个)、滤光片(多个)、CCD传感器(2个) | 10 | 0.26 |
文献[ | 激光光源(1个)、光纤(1根)、光纤准直器、光电传感器、放大及滤波电路(1组) | 1000 | 0.01 |
表1 检测平台成本及性能对比
Table 1 Cost and performance comparison of testing platforms
检测平台 | 平台组件及数量 | 频率检测上限/Hz | 可检测最小液滴直径/mm |
---|---|---|---|
本工作 | 光纤(1根)、数字光纤传感器(1个) | 500 | 0.21 |
文献[ | 光纤(2根)、LED光源(1个)、光电传感器(1个) | 200 | 0.15 |
文献[ | 激光光源(1个)、透镜(1个)、滤光片(多个)、CCD传感器(2个) | 10 | 0.26 |
文献[ | 激光光源(1个)、光纤(1根)、光纤准直器、光电传感器、放大及滤波电路(1组) | 1000 | 0.01 |
1 | Sohrabi S, Kassir N, Keshavarz Moraveji M. Droplet microfluidics: fundamentals and its advanced applications[J]. RSC Advances, 2020, 10(46): 27560-27574. |
2 | 崔永晋, 李严凯, 王凯, 等. 微分散设备数量放大方式研究进展[J]. 化工学报, 2020, 71(10): 4350-4364. |
Cui Y J, Li Y K, Wang K, et al. Recent advances of numbering-up technology of micro-dispersion devices[J]. CIESC Journal, 2020, 71(10): 4350-4364 | |
3 | Cui Y J, Li Y K, Wang K, et al. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels[J]. Journal of Flow Chemistry, 2020, 10(1): 271-282. |
4 | Li Y K, Liu G T, Xu J H, et al. A microdevice for producing monodispersed droplets under a jetting flow[J]. RSC Advances, 2015, 5(35): 27356-27364. |
5 | Fasciano S, Wang S E. Recent advances of droplet-based microfluidics for engineering artificial cells[J]. SLAS Technology, DOI:10.1016/j.slast.2023.05.002 . |
6 | Dyett B P, Zhang X H. Accelerated formation of H2 nanobubbles from a surface nanodroplet reaction[J]. ACS Nano, 2020, 14(9): 10944-10953. |
7 | Park J, Nie Z H, Kumachev A, et al. A microfluidic approach to chemically driven assembly of colloidal particles at gas-liquid interfaces[J]. Angewandte Chemie International Edition, 2009, 48(29): 5300-5304. |
8 | Yan L F, Wang H, Bai L, et al. Suzuki-Miyura cross-coupling reaction in droplet-based microreactor[J]. Chemical Engineering Science, 2019, 207: 352-357. |
9 | 郑雨婷, 方冠东, 张梦波, 等. 微化工精馏分离技术研究进展[J]. 化工学报, 2024, 75(1): 47-59. |
Zheng Y T, Fang G D, Zhang M B, et al. Research progress on micro-chemical rectification technology[J]. CIESC Journal, 2024, 75(1): 47-59. | |
10 | Sun M R, Durkin P, Li J R, et al. Label-free on-chip selective extraction of cell-aggregate-laden microcapsules from oil into aqueous solution with optical sensor and dielectrophoresis[J]. ACS Sensors, 2018, 3(2): 410-417. |
11 | Li X A, Breukers C, Ymeti A, et al. Clinical evaluation of a simple image cytometer for CD4 enumeration on HIV-infected patients[J]. Cytometry Part B: Clinical Cytometry, 2010, 78(1): 31-36. |
12 | Li W, Zhang L Y, Ge X H, et al. Microfluidic fabrication of microparticles for biomedical applications[J]. Chemical Society Reviews, 2018, 47(15): 5646-5683. |
13 | Scanlon T C, Dostal S M, Griswold K E. A high-throughput screen for antibiotic drug discovery[J]. Biotechnology and Bioengineering, 2014, 111(2): 232-243. |
14 | Zhu P G, Wang L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75. |
15 | Vasiliauskas R, Liu D F, Cito S, et al. Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14822-14832. |
16 | Wang J Y, Hu Y D, Deng R H, et al. Construction of multifunctional photonic crystal microcapsules with tunable shell structures by combining microfluidic and controlled photopolymerization[J]. Lab on a Chip, 2012, 12(16): 2795-2798. |
17 | Zhu Y, Fang Q. Analytical detection techniques for droplet microfluidics—a review[J]. Analytica Chimica Acta, 2013, 787: 24-35. |
18 | Moon S, Keles H O, Ozcan A, et al. Integrating microfluidics and lensless imaging for point-of-care testing[J]. Biosensors and Bioelectronics, 2009, 24(11): 3208-3214. |
19 | 王琦煜. 基于图像识别的微液滴计数与测量系统[J]. 科技视界, 2018(26): 25-26. |
Wang Q Y. Micro-droplet counting and measuring system based on image recognition[J]. Science & Technology Vision, 2018(26): 25-26. | |
20 | 周亚浩, 李雷, 叶大田. 用于细胞成像的便携型微流控芯片检测系统[J]. 清华大学学报(自然科学版), 2009, 49(9): 1569-1572. |
Zhou Y H, Li L, Ye D T. Portable microfluidic chip detection system for cell images[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(9): 1569-1572. | |
21 | 盛林, 昌宇, 邓建, 等. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
Sheng L, Chang Y, Deng J, et al. Formation and flow characteristics of ordered bubble swarm in a step T-junction microchannel[J]. CIESC Journal, 2023, 74(1): 416-427 | |
22 | Elbuken C, Glawdel T, Chan D, et al. Detection of microdroplet size and speed using capacitive sensors[J]. Sensors and Actuators A: Physical, 2011, 171(2): 55-62. |
23 | Baret J C, Miller O J, Taly V, et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity[J]. Lab on a Chip, 2009, 9(13): 1850-1858. |
24 | Hatakeyama T, Chen D L, Ismagilov R F. Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS[J]. Journal of the American Chemical Society, 2006, 128(8): 2518-2519. |
25 | Luo C X, Yang X J, Fu Q A, et al. Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation[J]. Electrophoresis, 2006, 27(10): 1977-1983. |
26 | Agresti J J, Antipov E, Abate A R, et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9): 4004-4009. |
27 | Srivastava S, Ali M A, Solanki P R, et al. Mediator-free microfluidics biosensor based on titania-zirconia nanocomposite for urea detection[J]. RSC Advances, 2013, 3(1): 228-235. |
28 | Tantra R, Manz A. Integrated potentiometric detector for use in chip-based flow cells[J]. Analytical Chemistry, 2000, 72(13): 2875-2878. |
29 | Srisa-Art M, DeMello A J, Edel J B. High-throughput confinement and detection of single DNA molecules in aqueous microdroplets[J]. Chemical Communications, 2009(43): 6548-6550. |
30 | Neil S R T, Rushworth C M, Vallance C, et al. Broadband cavity-enhanced absorption spectroscopy for real time, in situ spectral analysis of microfluidic droplets[J]. Lab on a Chip, 2011, 11(23): 3953-3955. |
31 | Trivedi V, Doshi A, Kurup G K, et al. A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening[J]. Lab on a Chip, 2010, 10(18): 2433-2442. |
32 | 阮琰. 微流控系统的液滴光学检测研究[D]. 北京: 北京交通大学, 2021. |
Ruan Y. Study on optical detection of droplets in microfluidic system[D]. Beijing: Beijing Jiaotong University, 2021. | |
33 | 郎明远. 光纤式微液滴检测与计数系统设计[D]. 天津: 天津大学, 2018. |
Lang M Y. Design of optical fiber droplet detection and counting system[D]. Tianjin: Tianjin University, 2018. |
[1] | 郑雨婷, 方冠东, 张梦波, 张浩淼, 王靖岱, 阳永荣. 微化工精馏分离技术研究进展[J]. 化工学报, 2024, 75(1): 47-59. |
[2] | 赵若晗, 黄蒙蒙, 朱春英, 付涛涛, 高习群, 马友光. 缩口T型微通道内纳米流体吸收CO2的流动与传质研究[J]. 化工学报, 2024, 75(1): 221-230. |
[3] | 李亚婷, 王忠东, 董艳鹏, 朱春英, 马友光, 付涛涛. 微通道中毛细流动及其工程应用的研究进展[J]. 化工学报, 2024, 75(1): 159-170. |
[4] | 王俊男, 何呈祥, 王忠东, 朱春英, 马友光, 付涛涛. T型微混合器内均相混合的数值模拟[J]. 化工学报, 2024, 75(1): 242-254. |
[5] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[6] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[7] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[8] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[9] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[10] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[11] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
[12] | 李昀, 曹杰, 华夏, 吴慧英. 短程逆流式微通道内的流动沸腾传热特性实验研究[J]. 化工学报, 2023, 74(11): 4501-4514. |
[13] | 徐健, 张东辉, 黄俊, 冯磊, 杨丰源, 高祥. 结构参数对烧结微通道流动沸腾性能的影响[J]. 化工学报, 2023, 74(11): 4548-4558. |
[14] | 汤志轩, 郭文华, 吴思远, 赵日晶, 黄东. 微通道蒸发器优化两相制冷剂分配及沸腾传热研究进展[J]. 化工学报, 2023, 74(10): 4020-4036. |
[15] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||