化工学报 ›› 2024, Vol. 75 ›› Issue (1): 322-337.DOI: 10.11949/0438-1157.20230635
收稿日期:
2023-06-27
修回日期:
2023-08-11
出版日期:
2024-01-25
发布日期:
2024-03-11
通讯作者:
姚臻
作者简介:
麻雪怡(1998—),女,硕士研究生,maxueyi@zju.edu.cn
基金资助:
Xueyi MA1(), Keqin LIU1, Jijiang HU1,2, Zhen YAO1,2(
)
Received:
2023-06-27
Revised:
2023-08-11
Online:
2024-01-25
Published:
2024-03-11
Contact:
Zhen YAO
摘要:
聚烯烃弹性体(POE)具有优异的性能而应用广泛,其工业生产通常采用溶液聚合方法。POE反应介质流变行为复杂,受温度、剪切速率、聚合物浓度等诸多因素影响。同时,反应介质的流变行为是决定混合效果的重要因素,进而影响反应进程。由于反应、流变和流场的相互作用,POE溶液聚合反应器的设计和生产过程控制面临着挑战。基于实测的动力学和流变数据,针对POE溶液聚合反应器建立了一个耦合计算流体力学(CFD)模型,综合考虑了流动、混合效率、反应动力学和流变特性等方面的影响,探究了不同工艺条件(搅拌转速、停留时间、进料温度)对速度场、温度场、浓度场、流变特性等参数的影响规律,为优化实际工业过程提供参考。
中图分类号:
麻雪怡, 刘克勤, 胡激江, 姚臻. POE溶液聚合反应器内混合与反应过程的CFD研究[J]. 化工学报, 2024, 75(1): 322-337.
Xueyi MA, Keqin LIU, Jijiang HU, Zhen YAO. CFD studies on the mixing and reaction in a solution polymerization reactor for POE production[J]. CIESC Journal, 2024, 75(1): 322-337.
网格数量/104个 | 进出口温升/K | 最小分子量 | 最大分子量 | 聚合物质量浓度/(kg/mol) | 乙烯转化率/% | 辛烯转化率/% | 最大黏度/(Pa·s) |
---|---|---|---|---|---|---|---|
20 | 96.34 | 138600 | 138860 | 71.89 | 81.67 | 20.08 | 0.128 |
32 | 96.88 | 139400 | 139990 | 72.56 | 82.30 | 20.45 | 0.161 |
38 | 98.07 | 136200 | 137060 | 73.64 | 83.31 | 21.17 | 0.160 |
50 | 98.35 | 137400 | 138600 | 73.72 | 83.44 | 21.09 | 0.158 |
表1 验证网格独立性模拟结果
Table1 Verify grid independence simulation results
网格数量/104个 | 进出口温升/K | 最小分子量 | 最大分子量 | 聚合物质量浓度/(kg/mol) | 乙烯转化率/% | 辛烯转化率/% | 最大黏度/(Pa·s) |
---|---|---|---|---|---|---|---|
20 | 96.34 | 138600 | 138860 | 71.89 | 81.67 | 20.08 | 0.128 |
32 | 96.88 | 139400 | 139990 | 72.56 | 82.30 | 20.45 | 0.161 |
38 | 98.07 | 136200 | 137060 | 73.64 | 83.31 | 21.17 | 0.160 |
50 | 98.35 | 137400 | 138600 | 73.72 | 83.44 | 21.09 | 0.158 |
搅拌转速/(r/min) | 进出口温升/K | 最小分子量 | 最大分子量 | 聚合物质量浓度/(kg/m3) | 乙烯转化率/% | 辛烯转化率/% | 扭矩/(N·m) | 搅拌功率/kW |
---|---|---|---|---|---|---|---|---|
100 | 98.69 | 138900 | 139350 | 73.6 | 83.45 | 20.84 | 23.01 | 0.24 |
200 | 98.06 | 136200 | 137060 | 73.6 | 83.31 | 21.17 | 122.66 | 2.57 |
300 | 96.58 | 138400 | 138780 | 72.1 | 81.82 | 20.20 | 195.28 | 6.13 |
1000 | 95.21 | 133891 | 133904 | 71.6 | 80.82 | 20.68 | 973.51 | 101.94 |
表2 不同搅拌转速对POE聚合模拟结果的影响
Table 2 The effect of different stirring speeds on the simulation results of POE polymerization
搅拌转速/(r/min) | 进出口温升/K | 最小分子量 | 最大分子量 | 聚合物质量浓度/(kg/m3) | 乙烯转化率/% | 辛烯转化率/% | 扭矩/(N·m) | 搅拌功率/kW |
---|---|---|---|---|---|---|---|---|
100 | 98.69 | 138900 | 139350 | 73.6 | 83.45 | 20.84 | 23.01 | 0.24 |
200 | 98.06 | 136200 | 137060 | 73.6 | 83.31 | 21.17 | 122.66 | 2.57 |
300 | 96.58 | 138400 | 138780 | 72.1 | 81.82 | 20.20 | 195.28 | 6.13 |
1000 | 95.21 | 133891 | 133904 | 71.6 | 80.82 | 20.68 | 973.51 | 101.94 |
停留时间/min | 进出口温升/K | 最小分子量 | 最大分子量 | 聚合物质量浓度/(kg/m3) | 乙烯转化率/% | 辛烯转化率/% |
---|---|---|---|---|---|---|
13 | 101.6 | 121900 | 122400 | 77.2 | 85.63 | 25.05 |
10 | 98.06 | 136200 | 137060 | 73.6 | 83.31 | 21.17 |
8 | 93.25 | 154700 | 155500 | 68.7 | 79.37 | 17.03 |
表3 不同停留时间对POE聚合模拟结果的影响
Table 3 The effect of different residence time on the simulation results of POE polymerization
停留时间/min | 进出口温升/K | 最小分子量 | 最大分子量 | 聚合物质量浓度/(kg/m3) | 乙烯转化率/% | 辛烯转化率/% |
---|---|---|---|---|---|---|
13 | 101.6 | 121900 | 122400 | 77.2 | 85.63 | 25.05 |
10 | 98.06 | 136200 | 137060 | 73.6 | 83.31 | 21.17 |
8 | 93.25 | 154700 | 155500 | 68.7 | 79.37 | 17.03 |
进料温度/℃ | 进出口温升/K | 最小 分子量 | 最大 分子量 | 聚合物质量浓度/(kg/m3) | 乙烯转化率/% | 辛烯转化率/% |
---|---|---|---|---|---|---|
60 | 96.10 | 134900 | 135600 | 71.4 | 81.58 | 19.22 |
80 | 98.06 | 136200 | 137060 | 73.6 | 83.31 | 21.17 |
100 | 98.64 | 143000 | 143210 | 73.9 | 83.41 | 21.62 |
表4 不同进料温度对POE聚合模拟结果的影响
Table 4 The effect of different feed temperatures on the simulation results of POE polymerization
进料温度/℃ | 进出口温升/K | 最小 分子量 | 最大 分子量 | 聚合物质量浓度/(kg/m3) | 乙烯转化率/% | 辛烯转化率/% |
---|---|---|---|---|---|---|
60 | 96.10 | 134900 | 135600 | 71.4 | 81.58 | 19.22 |
80 | 98.06 | 136200 | 137060 | 73.6 | 83.31 | 21.17 |
100 | 98.64 | 143000 | 143210 | 73.9 | 83.41 | 21.62 |
1 | 李伯耿, 张明轩, 刘伟峰, 等. 聚烯烃类弹性体——现状与进展[J]. 化工进展, 2017, 36(9): 3135-3144. |
Li B G, Zhang M X, Liu W F, et al. State-of-the-art and research progress of polyolefin-based elastomer[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3135-3144. | |
2 | 朱玉俊. 介绍一种新型弹性体材料——聚烯烃弹性体(POE)[J]. 化工新型材料, 1998(10): 20-30. |
Zhu Y J. Introduce a new type of elastomer material—polyolefin elastomer(POE)[J] New Chemical Materials, 1998(10): 20-30. | |
3 | 李瑞敏, 郝巍, 刘杰, 等. 阻燃交联聚烯烃弹性体复合材料的制备及其性能研究[J]. 化工新型材料, 2020, 48(12): 250-254. |
Li R M, Hao W, Liu J, et al. Preparation and performance study of flame-retardant cross-linked polyolefin elastomer composite materials[J]. New Chemical Materials, 2020, 48(12): 250-254. | |
4 | 李良杰. 聚烯烃弹性体及其催化体系研究进展[J]. 弹性体, 2015, 25(5): 88-94. |
Li L J. Research progress in polyolefin elastomers and their catalytic systems[J]. Elastomer, 2015, 25(5): 88-94. | |
5 | 任静, 王彬, 傅宏俊, 等. 非茂钛配合物催化乙烯/α-烯烃共聚制备聚烯烃弹性体[J]. 高分子材料科学与工程, 2017, 33(4): 1-6. |
Ren J, Wang B, Fu H J, et al. Ethylene catalyzed by non titanocene complexes/α- preparation of polyolefin elastomers by olefin copolymerization[J]. Polymer Materials Science and Engineering, 2017, 33(4): 1-6. | |
6 | 张宇婷, 韩书亮, 吴宁, 等. 水杨醛亚胺合钛催化体系合成聚烯烃弹性体[J]. 塑料, 2018, 47(5): 117-121, 129. |
Zhang Y T, Han S L, Wu N, et al. Synthesis of polyolefin elastomers using salicylaldehyde imine titanium catalyst system[J]. Plastic, 2018, 47(5): 117-121, 129. | |
7 | 王金强, 田洲, 程瑞华, 等. CGC/i-Bu3Al/Ph3C+B(C6F5) 4 - 催化乙烯均聚及乙烯与1-辛烯共聚行为[J]. 合成树脂及塑料, 2018, 35(6): 15-21, 26. |
Wang J Q, Tian Z, Cheng R H, et al. CGC/i-Bu3Al/Ph3C+B(C6F5) 4 - catalyzed homopolymerization of ethylene and copolymerization of ethylene with 1-octene[J]. Synthetic Resins and Plastics, 2018, 35(6): 15-21, 26. | |
8 | 燕晓飞. PP/POE热塑性弹性体的制备和性能研究[D]. 青岛: 青岛科技大学, 2009. |
Yan X F. Preparation and performance study of PP/POE thermoplastic elastomer[D]. Qingdao: Qingdao University of Science and Technology, 2009. | |
9 | 孙建中, 潘勤敏, 顾培韵, 等. 共轭二烯烃溶液聚合连续搅拌塔式反应器的研究——流动模型[J]. 化学反应工程与工艺, 1993, 9(4): 437-443. |
Sun J Z, Pan Q M, Gu P Y, et al. Research on continuous stirred column reactor for conjugated diene solution polymerization—flow model[J]. Chemical Reaction Engineering and Process, 1993, 9(4): 437-443. | |
10 | 张芳丽, 何金学. 聚合反应器的应用研究进展[J]. 当代化工, 2022, 51(8): 1871-1875. |
Zhang F L, He J X. Research progress in the application of polymerization reactors[J]. Contemporary Chemical Industry, 2022, 51(8): 1871-1875. | |
11 | 许超众. 面向分子量分布的溶液聚合过程CFD建模[D]. 杭州: 浙江大学, 2018. |
Xu C Z. CFD modeling of solution polymerization process for molecular weight distribution[D]. Hangzhou: Zhejiang University, 2018. | |
12 | 张弛. 基于计算流体力学的聚合反应分子量分布的模拟与优化[D]. 杭州: 浙江大学, 2017. |
Zhang C. Simulation and optimization of molecular weight distribution in polymerization reactions based on computational fluid dynamics[D]. Hangzhou: Zhejiang University, 2017. | |
13 | 孔婧. 考虑传递现象的复杂聚合反应过程模拟与优化方法[D]. 杭州: 浙江大学, 2020. |
Kong J. A simulation and optimization method for complex polymerization reaction processes considering transfer phenomena[D]. Hangzhou: Zhejiang University, 2020. | |
14 | Wells G J, Ray W H. Methodology for modeling detailed imperfect mixing effects in complex reactors[J]. AIChE Journal, 2005, 51(5): 1508-1520. |
15 | Zhang C, Shao Z J, Chen X, et al. Simulation and optimization of polymer molecular weight distribution with nonideal reactors[J]. Computers & Chemical Engineering, 2017, 106: 744-757. |
16 | López-Carpy B, Saldívar-Guerra E, Zapata-González I, et al. Mathematical modeling of the molecular weight distribution in low density polyethylene (Ⅰ): Steady-state operation of multizone autoclave reactors[J]. Macromolecular Reaction Engineering, 2018, 12(4): 1800013. |
17 | Meimaroglou D, Pladis P, Baltsas A, et al. Prediction of the molecular and polymer solution properties of LDPE in a high-pressure tubular reactor using a novel Monte Carlo approach[J]. Chemical Engineering Science, 2011, 66(8): 1685-1696. |
18 | Patel H, Ein-Mozaffari F, Dhib R. CFD analysis of mixing in thermal polymerization of styrene[J]. Computers & Chemical Engineering, 2010, 34(4): 421-429. |
19 | 韩颖. 基于计算流体力学的烯烃聚合反应器模型化与模拟研究[D]. 杭州: 浙江大学, 2013. |
Han Y. Modeling and simulation of olefin polymerization reactors based on computational fluid dynamics[D]. Hangzhou: Zhejiang University, 2013. | |
20 | Zhou W, Marshall E, Oshinowo L. Modeling LDPE tubular and autoclave reactors[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5533-5542. |
21 | Fathi Roudsari S, Ein-Mozaffari F, Dhib R. Use of CFD in modeling MMA solution polymerization in a CSTR[J]. Chemical Engineering Journal, 2013, 219: 429-442. |
22 | 刘伟峰. 乙烯/辛烯溶液共聚及其聚合物链结构的调控[D]. 杭州: 浙江大学, 2014. |
Liu W F. Ethylene/octene solution copolymerization and regulation of polymer chain structure[D]. Hangzhou: Zhejiang University, 2014. | |
23 | 赵根根. 聚烯烃弹性体亚浓溶液及熔体的流变特性研究[D]. 杭州: 浙江大学, 2018. |
Zhao G G. Study on the rheological properties of polyolefin elastomers in sub concentrated solutions and melts[D]. Hangzhou: Zhejiang University, 2018. | |
24 | Brucato A, Ciofalo M, Grisafi F, et al. Numerical prediction of flow fields in baffled stirred vessels: a comparison of alternative modelling approaches[J]. Chemical Engineering Science, 1998, 53(21): 3653-3684. |
25 | Singh K K, Mahajani S M, Shenoy K T, et al. CFD modeling of pilot-scale pump-mixer: single-phase head and power characteristics[J]. Chemical Engineering Science, 2007, 62(5): 1308-1322. |
26 | Luo J Y, Gosman A D, Issa R I. Prediction of impeller-induced flows in mixing vessels using multiple frames of reference[J]. IChemE Symposium Series, 1994, 136(4): 549-556. |
27 | Pauli L, Both J W, Behr M. Stabilized finite element method for flows with multiple reference frames[J]. International Journal for Numerical Methods in Fluids, 2015, 78(11): 657-669. |
28 | 李超. 气流床气化炉内颗粒流动模拟及分区模型研究[D]. 上海: 华东理工大学, 2013. |
Li C. Research on particle flow simulation and zoning model in an airflow bed gasifier[D]. Shanghai: East China University of Science and Technology, 2013. | |
29 | Sommerfeld M, Decker S. State of the art and future trends in CFD simulation of stirred vessel hydrodynamics[J]. Chemical Engineering & Technology, 2004, 27(3): 215-224. |
30 | 叶阳. 新型卧式双轴反应器的CFD模拟与传质研究[D]. 杭州: 浙江大学, 2019. |
Ye Y. CFD simulation and mass transfer study of a new horizontal biaxial reactor[D]. Hangzhou: Zhejiang University, 2019. |
[1] | 王婷, 王忠东, 项星宇, 何呈祥, 朱春英, 马友光, 付涛涛. 微反应器内环酯类锂电池添加剂合成研究进展[J]. 化工学报, 2024, 75(1): 95-109. |
[2] | 朱娇, 栾丽萍, 从深震, 刘新磊. 氢气分离有机膜[J]. 化工学报, 2024, 75(1): 138-158. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[7] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[8] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[9] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[10] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[13] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[14] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[15] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 |
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||