化工学报 ›› 2023, Vol. 74 ›› Issue (5): 2207-2216.DOI: 10.11949/0438-1157.20230146
李瑞康1(), 何盈盈1(
), 卢维鹏1, 王园园2, 丁皓东1, 骆勇名1
收稿日期:
2023-02-22
修回日期:
2023-05-06
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
何盈盈
作者简介:
李瑞康(1997—),女,硕士研究生,3041446231@qq.com
基金资助:
Ruikang LI1(), Yingying HE1(
), Weipeng LU1, Yuanyuan WANG2, Haodong DING1, Yongming LUO1
Received:
2023-02-22
Revised:
2023-05-06
Online:
2023-05-05
Published:
2023-06-29
Contact:
Yingying HE
摘要:
在泡沫镍(NF)表面水热法生长了Co-MOF,经热处理制备了Co3O4@NF,通过扫描电镜、透射电镜、X射线衍射、X射线光电子能谱等手段对材料的形貌和结构进行了表征。将其作为阴极与过一硫酸盐(PMS)构成了电化学强化过一硫酸盐活化体系EC/Co3O4@NF/PMS,用于降解左氧氟沙星(LEV)。结果显示该体系在pH 3.0、PMS加入量3.5 mmol·L-1、电流密度4 mA·cm-2、40 min时LEV的降解率可达到95.8%,55 min时化学需氧量(COD)去除率为73.3%,显著优于没有施加电流的体系。对体系中活性物种产生机制的研究表明,电场主要通过加速Co3O4@NF阴极表面的Co3+—Co2+循环,促进了PMS活化为单线态氧1O2和
中图分类号:
李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216.
Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate[J]. CIESC Journal, 2023, 74(5): 2207-2216.
催化剂 | 反应条件 | LEV降解率/COD或TOC去除率 | 文献 |
---|---|---|---|
rose petal derived Co3O4/MC | 10 mg·L-1 LEV, 0.3 mmol·L-1 PMS, pH 5.5 | 100% (12 min) | [ |
SrCoO3/MnFe2O4/MoS2 | 20 mg·L-1 LEV, 1 g·L-1 PMS, pH 6 | 95.1% (20 min) | [ |
CoFe2O4 | 20 mg·L-1 LEV, 20 mmol·L-1 PMS, pH 5.6, 15 mA·cm-2 | 91.7% (40 min)/30.6%(TOC 40 min) | [ |
MgO/Co3O4 | 10 mg·L-1 LEV, 300 mg·L-1 PMS, pH 5 | 96.9% (20 min)/38.5%(TOC 20 min) | [ |
Co3O4/NF | 20 mg·L-1 LEV, 3.5 mmol·L-1 PMS, pH 3.0, 4 mA·cm-2 | 95.8% (40 min)/73.3%(COD 55 min) | 本文 |
表1 LEV降解效果比较
Table 1 Comparison of the LEV degradation
催化剂 | 反应条件 | LEV降解率/COD或TOC去除率 | 文献 |
---|---|---|---|
rose petal derived Co3O4/MC | 10 mg·L-1 LEV, 0.3 mmol·L-1 PMS, pH 5.5 | 100% (12 min) | [ |
SrCoO3/MnFe2O4/MoS2 | 20 mg·L-1 LEV, 1 g·L-1 PMS, pH 6 | 95.1% (20 min) | [ |
CoFe2O4 | 20 mg·L-1 LEV, 20 mmol·L-1 PMS, pH 5.6, 15 mA·cm-2 | 91.7% (40 min)/30.6%(TOC 40 min) | [ |
MgO/Co3O4 | 10 mg·L-1 LEV, 300 mg·L-1 PMS, pH 5 | 96.9% (20 min)/38.5%(TOC 20 min) | [ |
Co3O4/NF | 20 mg·L-1 LEV, 3.5 mmol·L-1 PMS, pH 3.0, 4 mA·cm-2 | 95.8% (40 min)/73.3%(COD 55 min) | 本文 |
1 | Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1/2): 109-118. |
2 | Xu Z Q, Jiang J, Wang M, et al. Enhanced levofloxacin degradation by hierarchical porous Co3O4 with rich oxygen vacancies activating peroxymonosulfate: performance and mechanism[J]. Separation and Purification Technology, 2023, 304: 122055. |
3 | Wang J L, Wang S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
4 | Olmez-Hanci T, Arslan-Alaton I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224: 10-16. |
5 | Qi C D, Liu X T, Ma J, et al. Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151: 280-288. |
6 | Zhang X K, Liu J, Zhang H Z, et al. Uncovering the pathway of peroxymonosulfate activation over Co0.5Zn0.5O nanosheets for singlet oxygen generation: performance and membrane application[J]. Applied Catalysis B: Environmental, 2023, 327: 122429. |
7 | Lu C, Zhang S L, Wang J, et al. Efficient activation of peroxymonosulfate by iron-containing mesoporous silica catalysts derived from iron tailings for degradation of organic pollutants[J]. Chemical Engineering Journal, 2022, 446: 137044. |
8 | Han X L, Zhang W, Li S, et al. Mn-MOF derived manganese sulfide as peroxymonosulfate activator for levofloxacin degradation: an electron-transfer dominated and radical/nonradical coupling process[J]. Journal of Environmental Sciences, 2023, 130: 197-211. |
9 | Mi X Y, Zhong H, Zhang H X, et al. Facilitating redox cycles of copper species by pollutants in peroxymonosulfate activation[J]. Environmental Science & Technology, 2022, 56(4): 2637-2646. |
10 | Wang F X, Zhang Z C, Yi X H, et al. A micron-sized Co-MOF sheet to activate peroxymonosulfate for efficient organic pollutant degradation[J]. CrystEngComm, 2022, 24(31): 5557-5561. |
11 | Zhang W W, He Y C, Li C, et al. Persulfate activation using Co/AC particle electrodes and synergistic effects on humic acid degradation[J]. Applied Catalysis B: Environmental, 2021, 285: 119848. |
12 | Li Z L, Wang M, Jin C Y, et al. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 392: 123789. |
13 | Sun X P, Liu Z B, Sun Z R. Electro-enhanced degradation of atrazine via Co-Fe oxide modified graphite felt composite cathode for persulfate activation[J]. Chemical Engineering Journal, 2022, 433: 133789. |
14 | Yan C, Liu L. Oxidation of gas phase ammonia via accelerated generation of radical species and synergy of photo electrochemical catalysis with persulfate activation by CuO-Co3O4 on cathode electrode[J]. Journal of Hazardous Materials, 2020, 388: 121793. |
15 | Tang S F, Zhao M Z, Yuan D L, et al. MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation[J]. Separation and Purification Technology, 2021, 255(7): 117690. |
16 | Zhao C, Meng L H, Chu H Y, et al. Ultrafast degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe3C/Fe@N-C-x: singlet oxygen evolution and electron-transfer mechanisms[J]. Applied Catalysis B: Environmental, 2023, 321: 122034. |
17 | Chen M M, Niu H Y, Niu C G, et al. Metal-organic framework-derived CuCo/carbon as an efficient magnetic heterogeneous catalyst for persulfate activation and ciprofloxacin degradation[J]. Journal of Hazardous Materials, 2022, 424: 127196. |
18 | Zhou H J, Lu D X, Fang S Q, et al. Prompting direct single electron transfer to produce non-radical 1O2/H* by electro-activating peroxydisulfate process with core-shell cathode[J]. Journal of Environmental Management, 2021, 287: 112294. |
19 | Di J, Zhu M Z, Jamakanga R, et al. Electrochemical activation combined with advanced oxidation on NiCo2O4 nanoarray electrode for decomposition of Rhodamine B[J]. Journal of Water Process Engineering, 2020, 37: 101386. |
20 | Dang Y, Bai Y Y, Zhang Y C, et al. Tannic acid reinforced electro-Fenton system based on GO-Fe3O4/NF cathode for the efficient catalytic degradation of PNP[J]. Chemosphere, 2022, 289: 133046. |
21 | He Y X, Qian J, Wang P F, et al. Acceleration of levofloxacin degradation by combination of multiple free radicals via MoS2 anchored in manganese ferrite doped perovskite activated PMS under visible light[J]. Chemical Engineering Journal, 2022, 431: 133933. |
22 | Zhang Q Y, Sun X Q, Dang Y, et al. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe2O4 synergistic catalysis for the efficient removal of levofloxacin[J]. Journal of Hazardous Materials, 2022, 424: 127651. |
23 | Xue X J, Liao W D, Liu D L, et al. MgO/Co3O4 composite activated peroxymonosulfate for levofloxacin degradation: role of surface hydroxyl and oxygen vacancies[J]. Separation and Purification Technology, 2023, 306: 122560. |
24 | Ren W, Zhou P, Nie G, et al. Hydroxyl radical dominated elimination of plasticizers by peroxymonosulfate on metal-free boron: kinetics and mechanisms[J]. Water Research, 2020, 186: 116361. |
25 | Dong Z T, Niu C G, Guo H, et al. Anchoring CuFe2O4 nanoparticles into N-doped carbon nanosheets for peroxymonosulfate activation: built-in electric field dominated radical and non-radical process[J]. Chemical Engineering Journal, 2021, 426: 130850. |
26 | Wang Z P, Wang J W, Xiong B, et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: efficiency and mechanisms[J]. Environmental Science & Technology, 2020, 54(1): 464-475. |
27 | Liu G F, Li X C, Han B J, et al. Efficient degradation of sulfamethoxazole by the Fe(Ⅱ)/HSO 5 - process enhanced by hydroxylamine: efficiency and mechanism[J]. Journal of Hazardous Materials, 2017, 322: 461-468. |
28 | Ahn Y Y, Bae H, Kim H I, et al. Surface-loaded metal nanoparticles for peroxymonosulfate activation: efficiency and mechanism reconnaissance[J]. Applied Catalysis B: Environmental, 2019, 241: 561-569. |
29 | Jin Y Z, Feng X J, Yang A Q, et al. Peroxymonosulfate activation by brownmillerite-type oxide Ca2Co2O5 for efficient degradation of pollutants via direct electron transfer and radical pathways[J]. Separation and Purification Technology, 2021, 278: 119619. |
30 | Zhou J H, Li X S, Yuan J, et al. Efficient degradation and toxicity reduction of tetracycline by recyclable ferroferric oxide doped powdered activated charcoal via peroxymonosulfate (PMS) activation[J]. Chemical Engineering Journal, 2022, 441: 136061. |
31 | Huang Q Q, Zhang J Y, He Z Y, et al. Direct fabrication of lamellar self-supporting Co3O4/N/C peroxymonosulfate activation catalysts for effective aniline degradation[J]. Chemical Engineering Journal, 2017, 313: 1088-1098. |
32 | Kim D G, Ko S O. Effects of thermal modification of a biochar on persulfate activation and mechanisms of catalytic degradation of a pharmaceutical[J]. Chemical Engineering Journal, 2020, 399: 125377. |
33 | Yuan X J, Shen D Y, Zhang Q, et al. Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline[J]. Chemical Engineering Journal, 2019, 369: 292-301. |
34 | Zhang H X, Li C W, Lyu L, et al. Surface oxygen vacancy inducing peroxymonosulfate activation through electron donation of pollutants over cobalt-zinc ferrite for water purification[J]. Applied Catalysis B: Environmental, 2020, 270: 118874. |
35 | Wu L P, Li B, Li Y, et al. Preferential growth of the cobalt (200) facet in Co@N-C for enhanced performance in a Fenton-like reaction[J]. ACS Catalysis, 2021, 11(9): 5532-5543. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[3] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[4] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[5] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[6] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[9] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[10] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[11] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[12] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
[13] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[14] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[15] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 191
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 299
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||