化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4062-4069.DOI: 10.11949/0438-1157.20220493
收稿日期:
2022-04-06
修回日期:
2022-06-24
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
张玉玲
作者简介:
靳文章(1997—),女,硕士研究生,17332339185@163.com
基金资助:
Wenzhang JIN1(), Yuling ZHANG1(), Xiaoyu JIA1,2
Received:
2022-04-06
Revised:
2022-06-24
Online:
2022-09-05
Published:
2022-10-09
Contact:
Yuling ZHANG
摘要:
羟基亚乙基二膦酸(HEDP)是典型的有机膦缓蚀阻垢剂,广泛存在于工业水处理系统中,其常规生物降解率低于5%,已成为工业废水处理回用和外排的制约因素。为此,探索了电化学高级氧化法对HEDP的降解效能,考察了电流密度、Na2SO4浓度、pH、温度及溶液流速等关键参数对HEDP降解率的影响;利用电子自旋共振测试,自由基猝灭方法和HEDP降解动力学探讨了HEDP的降解机制。结果表明,电流密度为30 mA/cm2,电解质Na2SO4浓度为0.1 mol/L,pH=11,温度为30℃,溶液流速为500 ml/min时HEDP降解率最高,90 min内可达99.7%;研究采用的电化学高级氧化体系产生羟基自由基(·OH)和硫酸根自由基(SO
中图分类号:
靳文章, 张玉玲, 贾晓宇. 电化学高级氧化对HEDP的降解效能研究[J]. 化工学报, 2022, 73(9): 4062-4069.
Wenzhang JIN, Yuling ZHANG, Xiaoyu JIA. Study on degradation efficiency of hydroxyethylidene diphosphonic acid by electrochemical advanced oxidation[J]. CIESC Journal, 2022, 73(9): 4062-4069.
氧化反应 | 氧化电位/V |
---|---|
2H2O | -1.23 |
2SO | -2.01 |
H2O | -2.74 |
表1 氧化反应电位
Table 1 Oxidation reaction potential
氧化反应 | 氧化电位/V |
---|---|
2H2O | -1.23 |
2SO | -2.01 |
H2O | -2.74 |
图10 添加自由基猝灭剂对HEDP降解效果的影响(反应条件:电流密度30 mA/cm2, Na2SO4浓度0.1 mol/L, pH=5.6, T=30℃, 溶液流速500 ml/min)
Fig.10 Effect of free radical quencher on degradation rate of HEDP
猝灭剂 种类 | 猝灭剂浓度/(mmol/L) | c1k1 | c2k2 |
---|---|---|---|
甲醇 | 30 | 2.9×1010 | 3.6×107 |
叔丁醇 | 70 | (2.7×1010)~(5.4×1010) | 3.6×107 |
表2 猝灭剂和HEDP的ck值
Table 2 ck values of quencher and HEDP
猝灭剂 种类 | 猝灭剂浓度/(mmol/L) | c1k1 | c2k2 |
---|---|---|---|
甲醇 | 30 | 2.9×1010 | 3.6×107 |
叔丁醇 | 70 | (2.7×1010)~(5.4×1010) | 3.6×107 |
1 | 惠岚峰,刘忠, 刘鹏涛, 等. 一种新型螯合剂在脱墨浆过氧化氢漂白中应用的方法[J]. 天津造纸, 2018, 40(4): 36-37, 43. |
Hui L F, Liu Z, Liu P T, et al. Application of a new chelating agent in hydrogen peroxide bleaching of Deinked Pulp[J]. Tianjin Paper Making, 2018, 40(4): 36-37, 43. | |
2 | 赖奂汶, 郭崇武, 陈康. HEDP镀铜废水的组合处理方法[J]. 电镀与涂饰, 2021, 40(5): 400-403. |
Lai H W, Guo C W, Chen K. Combined process for treatment of HEDP copper electroplating wastewater [J]. Electroplating & Finishing, 2021, 40(5): 400-403. | |
3 | 刘静, 廖志祥, 吴雨桥, 等. HEDP镀铜体系中铜阳极的电化学溶解行为[J]. 电镀与涂饰, 2021, 40(16): 1231-1237. |
Liu J, Liao Z X, Wu Y Q, et al. Electrochemical dissolution behavior of copper anode during copper electroplating in HEDP electrolyte[J]. Electroplating & Finishing, 2021, 40(16): 1231-1237. | |
4 | Mirković M, Milanović Z, Stanković D, et al. Investigation of 177 Lu-labeled HEDP, DPD, and IDP as potential bone pain palliation agents[J]. Journal of Radiation Research and Applied Sciences, 2020, 13(1): 27-36. |
5 | Heine R T, Lange R, Breukels O, et al. Bench to bedside development of GMP grade Rhenium-188-HEDP, a radiopharmaceutical for targeted treatment of painful bone metastases[J]. International Journal of Pharmaceutics, 2014, 465(1/2): 317-324. |
6 | 潘丽娜. 工业循环冷却水添加阻垢缓蚀剂的试验研究[J]. 华电技术, 2017, 39(2): 31-34, 37, 77. |
Pan L N. Experimental study on scale and corrosion inhibitor for industrial circulating cooling water[J]. Huadian Technology, 2017, 39(2): 31-34, 37, 77. | |
7 | Li C, Yang Q F, Nie H F, et al. Adsorption removal of organic phosphonate HEDP by magnetic composite doped with different rare earth elements[J]. Chemical Engineering Journal Advances, 2022, 9: 100221. |
8 | 刘诚, 郑云飞, 杨思原. 油酸钠体系下HEDP对磷灰石与方解石浮选分离的影响[J]. 中国有色金属学报, 2021, 31(6): 1632-1638. |
Liu C, Zheng Y F, Yang S Y. Effect of HEDP on flotation separation of apatite from calcite using sodium oleate as collector[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(6): 1632-1638. | |
9 | Zhang Y, Xia M, Wang F, et al. Experimental and theoretical study on the adsorption mechanism of amino trimethylphosphate (ATMP) functionalized hydroxyapatite on Pb (Ⅱ) and Cd (Ⅱ)[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2021, 626: 127029. |
10 | Pan G X, Zhang Y H, Sun P P, et al. A brand-new bimetallic copper-lithium HEDP complex of fast ion migration as a promising anode for lithium ion batteries[J]. Journal of Molecular Structure, 2020, 1214: 128223. |
11 | 张可桂, 左兆顺, 杨文忠, 等. HEDP、PBTCA、PAA对CaCO3垢抑制作用的电化学研究[J]. 工业水处理, 2021, 41(9): 117-123. |
Zhang K G, Zuo Z S, Yang W Z, et al. Electrochemical investigations of the inhibitory effect of HEDP, PBTCA and PAA on CaCO3 scale[J]. Industrial Water Treatment, 2021, 41(9): 117-123. | |
12 | 李创, 杨庆峰, 陆盛森, 等. La/FeOOH@PAC对反渗透浓缩液中有机膦酸盐阻垢剂HEDP的吸附性能研究[J]. 无机材料学报, 2021, 36(8): 841-846. |
Li C, Yang Q F, Lu S S, et al. Adsorption of phosphonate antiscalant HEDP from reverse osmosis concentrates by La/FeOOH@PAC[J]. Journal of Inorganic Materials, 2021, 36(8): 841-846. | |
13 | Zhou Y, Cui Y, Wang X, et al. Melamine-formaldehyde microcapsules encapsulating HEDP for sustained scale inhibition[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127361. |
14 | 曹凤婷, 魏洁, 董俊华, 等. 羟基亚乙基二膦酸对20SiMn钢在含Cl-混凝土模拟孔隙液中的缓蚀行为[J]. 金属学报, 2020, 56(6): 898-908. |
Cao F T, Wei J, Dong J H, et al. Corrosion inhibition behavior of 1-hydroxyethylidene-1, 1-diphosphonic acid on 20SiMn steel in simulated concrete pore solution containing Cl- [J]. Acta Metallurgica Sinica, 2020, 56(6): 898-908. | |
15 | Fisher H C, Moles A F, Bodnar S H, et al. Progress Towards Biodegradable Phosphonate Scale Inhibitors[C].SPE Oilfield Chemistery, 2009. |
16 | Armbruster D, Rott E, Minke R, et al. Trace-level determination of phosphonates in liquid and solid phase of wastewater and environmental samples by IC-ESI-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2020, 412(20): 4807-4825. |
17 | Forlani G, Prearo V, Wieczorek D, et al. Phosphonate degradation by Spirulina strains: cyanobacterial biofilters for the removal of anticorrosive polyphosphonates from wastewater[J]. Enzyme and Microbial Technology, 2011, 48(3): 299-305. |
18 | White V E, Knowles C J. Degradation of copper-NTA by Mesorhizobium sp. NCIMB 13524[J]. International Biodeterioration & Biodegradation, 2003, 52(3): 143-150. |
19 | Fischer K. Distribution and elimination of HEDP in aquatic test systems[J]. Water Research, 1993, 27(3): 485-493. |
20 | Rott E, Nouri M, Meyer C, et al. Removal of phosphonates from synthetic and industrial wastewater with reusable magnetic adsorbent particles[J]. Water Research, 2018, 145: 608-617. |
21 | Rott E, Steinmetz H, Metzger J W. Organophosphonates: a review on environmental relevance, biodegradability and removal in wastewater treatment plants[J]. Science of the Total Environment, 2018, 615: 1176-1191. |
22 | Studnik H, Liebsch S, Forlani G, et al. Amino polyphosphonates-chemical features and practical uses, environmental durability and biodegradation[J]. New Biotechnology, 2015, 32(1): 1-6. |
23 | Xu Z B, Wang W L, Huang N, et al. 2-Phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) degradation by ozonation: kinetics, phosphorus transformation, anti-precipitation property changes and phosphorus removal[J]. Water Research, 2019, 148: 334-343. |
24 | Huang N, Wang T, Wang W L, et al. UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: synergistic effect, transformation products and toxicity evaluation[J]. Water Research, 2017, 114: 246-253. |
25 | Huang N, Xu Z B, Wang W L, et al. Elimination of amino trimethylene phosphonic acid (ATMP) antiscalant in reverse osmosis concentrate using ozone: anti-precipitation property changes and phosphorus removal[J]. Chemosphere, 2022, 291: 133027. |
26 | Titchou F E, Zazou H, Afanga H, et al. An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes[J]. Journal of Water Process Engineering, 2021, 41: 102040. |
27 | Feng H, Chen Z, Wang X, et al. Electrochemical advanced oxidation for treating ultrafiltration effluent of a landfill leachate system: Impacts of organics and inorganics and economic evaluation[J]. Chemical Engineering Journal, 2021, 413: 127492. |
28 | Raj R, Tripathi A, Das S, et al. Removal of caffeine from wastewater using electrochemical advanced oxidation process: a mini review[J]. Case Studies in Chemical and Environmental Engineering, 2021, 4: 100129. |
29 | Yu F, Tao L, Yang Y, et al. Electrochemical catalytic mechanism of N-doped electrode for in-situ generation of OH in metal-free EAOPs to degrade organic pollutants[J]. Separation and Purification Technology, 2021, 277: 119432. |
30 | Wang W L, Wu Q Y, Huang N, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species[J]. Water Research, 2016, 98: 190-198. |
31 | Zou J, Ma J, Zhang J. Comment on electrolytic manipulation of persulfate reactivity by iron electrodes for TCE degradation in groundwater[J]. Environmental Science & Technology, 2014, 48(8): 4630-4631. |
32 | Yuan S, Liao P, Alshawabkeh A N. Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater[J]. Environmental Science & Technology, 2014, 48(1): 656-663. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[5] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[8] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[9] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[10] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[11] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[14] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[15] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 323
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||