化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2670-2679.DOI: 10.11949/0438-1157.20240198
胡军勇(), 胡亚丽, 谭学诣, 黄佳欣, 张乐炜, 曾俊立, 刘晓奕, 陶源
收稿日期:
2024-02-26
修回日期:
2024-04-13
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
胡军勇
作者简介:
胡军勇(1989—),男,博士,讲师,Hu_Junyong@outlook.com
基金资助:
Junyong HU(), Yali HU, Xueyi TAN, Jiaxin HUANG, Lewei ZHANG, Junli ZENG, Xiaoyi LIU, Yuan TAO
Received:
2024-02-26
Revised:
2024-04-13
Online:
2024-07-25
Published:
2024-08-09
Contact:
Junyong HU
摘要:
与单级逆电渗析相比,多级逆电渗析(multi-stage reverse electrodialysis,MSRED)在逆电渗析热机输出功率方面更具有优势,因其可将更多的溶液盐差能转换为电能。为进一步提高MSRED 的输出功率,对比研究了先前开发的LiCl-NH4Cl水溶液(质量摩尔比为2∶8)与传统NaCl水溶液在作为MSRED工作溶液时装置的总净输出功率。结果表明,采用LiCl-NH4Cl水溶液的MSRED能够实现大电流输出,且与等质量摩尔浓度的NaCl水溶液相比,MSRED的总净输出功率最高提升28.6%。另外,无论相关工况参数如何变化,采用LiCl-NH4Cl水溶液的MSRED均能获得比等质量摩尔浓度的NaCl水溶液条件下更高的总净输出功率;同时系统所使用的电堆数量更少,从而可节省设备成本并减小装置体积。
中图分类号:
胡军勇, 胡亚丽, 谭学诣, 黄佳欣, 张乐炜, 曾俊立, 刘晓奕, 陶源. 基于LiCl-NH4Cl水溶液多级逆电渗析性能的实验研究[J]. 化工学报, 2024, 75(7): 2670-2679.
Junyong HU, Yali HU, Xueyi TAN, Jiaxin HUANG, Lewei ZHANG, Junli ZENG, Xiaoyi LIU, Yuan TAO. Experimental study on the performance of multi-stage reverse electrodialysis based on LiCl-NH4Cl aqueous solution[J]. CIESC Journal, 2024, 75(7): 2670-2679.
试剂 | 纯度 | 生产商 |
---|---|---|
氯化锂 | AR,99.0% | 上海麦克林生化科技 |
氯化铵 | AR,99.5% | 上海麦克林生化科技 |
氯化钠 | AR,≥ 99.5% | 天津大茂化学试剂厂 |
铁氰化钾 | AR,99.5% | 上海阿拉丁生化科技 |
亚铁氰化钾 | AR,99.0% | 天津大茂化学试剂厂 |
表1 实验试剂的具体信息
Table 1 Specific information of experimental reagents
试剂 | 纯度 | 生产商 |
---|---|---|
氯化锂 | AR,99.0% | 上海麦克林生化科技 |
氯化铵 | AR,99.5% | 上海麦克林生化科技 |
氯化钠 | AR,≥ 99.5% | 天津大茂化学试剂厂 |
铁氰化钾 | AR,99.5% | 上海阿拉丁生化科技 |
亚铁氰化钾 | AR,99.0% | 天津大茂化学试剂厂 |
型号 | 选择 透过性α/% | 电阻R/(Ω∙cm2) | |
---|---|---|---|
Fujifilm Type 10 AEM | 1.25 | 94 | 1.7 |
Fujifilm Type 10 CEM | 1.35 | 98.5 | 2.0 |
表2 IEMs基本参数
Table 2 Basic parameters of Fujifilm IEMs
型号 | 选择 透过性α/% | 电阻R/(Ω∙cm2) | |
---|---|---|---|
Fujifilm Type 10 AEM | 1.25 | 94 | 1.7 |
Fujifilm Type 10 CEM | 1.35 | 98.5 | 2.0 |
型号 | 材料 | 开孔面积/% | 孔隙率ε/% | |
---|---|---|---|---|
DPP32 | PET | 1.50 | 68 | 79.2 |
表3 隔垫的相关参数
Table 3 Relevant parameters of the spacers
型号 | 材料 | 开孔面积/% | 孔隙率ε/% | |
---|---|---|---|---|
DPP32 | PET | 1.50 | 68 | 79.2 |
实验设备 | 型号 | 测量范围 | 精度 | 生产商 |
---|---|---|---|---|
电子天平 | JJ1523BC | 0~1520 g | ±0.001 g | G&G 测试仪器, 中国 |
电化学工作站 | CHI660E | 3 nA~250 mA | 0.2% | 上海辰华仪器有限公司,中国 |
电流放大器 | CHI680C | ±2 A | 1 pA | 上海辰华仪器有限公司,中国 |
数字万用表 | Keithley 2110 | ±10 V | ±0.012% | 泰克科技有限公司,美国 |
恒温水箱 | HH-600 | 室温~100℃ | ±0.5℃ | 智博睿仪器制造有限公司,中国 |
压差变送器 | MIK-2051 | 0~350 kPa | ±0.075% | 杭州美控自动化技术有限公司, 中国 |
蠕动泵 | DIPump 550-B253 | ≤ 452 ml·min-1 | 0.1 r·min-1 | Kamoer,中国 |
表4 实验设备型号、测量范围及精度
Table 4 Relevant parameters of experimental equipment and instruments
实验设备 | 型号 | 测量范围 | 精度 | 生产商 |
---|---|---|---|---|
电子天平 | JJ1523BC | 0~1520 g | ±0.001 g | G&G 测试仪器, 中国 |
电化学工作站 | CHI660E | 3 nA~250 mA | 0.2% | 上海辰华仪器有限公司,中国 |
电流放大器 | CHI680C | ±2 A | 1 pA | 上海辰华仪器有限公司,中国 |
数字万用表 | Keithley 2110 | ±10 V | ±0.012% | 泰克科技有限公司,美国 |
恒温水箱 | HH-600 | 室温~100℃ | ±0.5℃ | 智博睿仪器制造有限公司,中国 |
压差变送器 | MIK-2051 | 0~350 kPa | ±0.075% | 杭州美控自动化技术有限公司, 中国 |
蠕动泵 | DIPump 550-B253 | ≤ 452 ml·min-1 | 0.1 r·min-1 | Kamoer,中国 |
电流密度id/(A·m-2) | 浓溶液质量摩尔浓度mHC/(mol·kg-1) | 稀溶液质量摩尔浓度mLC/(mol·kg-1) | 流速v/(cm·s-1) |
---|---|---|---|
20~80 | 3~5 | 0.01~0.1 | 0.5~2 |
表5 实验参数变化范围
Table 5 Variation range of experimental parameters
电流密度id/(A·m-2) | 浓溶液质量摩尔浓度mHC/(mol·kg-1) | 稀溶液质量摩尔浓度mLC/(mol·kg-1) | 流速v/(cm·s-1) |
---|---|---|---|
20~80 | 3~5 | 0.01~0.1 | 0.5~2 |
图4 不同电流密度下总净输出功率随电堆数量的变化[mHC=4 mol·kg-1,mLC=0.05 mol·kg-1,t =(25±1)℃,v=1.0 cm·s-1]
Fig. 4 Variations of the total net output power with the number of RED stacks under different current densities (id) [mHC=4 mol·kg-1, mLC=0.05 mol·kg-1, t=(25±1)°C, v=1.0 cm·s-1]
电池 单元数 | 工作溶液 | id/(A·m-2) | N | Pnet/W | 文献 |
---|---|---|---|---|---|
5 | NaCl水溶液 | 60 | 8 | 0.92 | [ |
10 | NaCl水溶液 | —① | 22 | 0.34② | [ |
10 | LiBr-H2O-CH3CH2OH | —① | 22 | 0.99② | [ |
5 | LiCl-NH4Cl水溶液 | 80 | 9 | 1.17 | 本文 |
表6 相关MSRED性能数据对比
Table 6 Comparison of pertinent performance data for MSRED
电池 单元数 | 工作溶液 | id/(A·m-2) | N | Pnet/W | 文献 |
---|---|---|---|---|---|
5 | NaCl水溶液 | 60 | 8 | 0.92 | [ |
10 | NaCl水溶液 | —① | 22 | 0.34② | [ |
10 | LiBr-H2O-CH3CH2OH | —① | 22 | 0.99② | [ |
5 | LiCl-NH4Cl水溶液 | 80 | 9 | 1.17 | 本文 |
图5 不同进料浓溶液质量摩尔浓度下总净输出功率随电堆数量的变化[mLC=0.05 mol·kg-1,t =(25±1)℃,v=1.0 cm·s-1]
Fig.5 Variations of the total net output power with the number of RED stacks under different molality concentration of HC feed solution [mLC=0.05 mol·kg-1, t=(25±1)℃, v = 1.0 cm·s-1]
图6 不同进料稀溶液质量摩尔浓度下总净输出功率随电堆数量的变化[mHC=4 mol·kg-1,t=(25±1)℃,v=1.0 cm·s-1]
Fig.6 Variations of the total net output power with the number of RED stacks under different molality concentration of LC feed solution [mHC=4 mol·kg-1, t=(25±1)℃, v=1.0 cm·s-1]
图7 不同进料流速下总净输出功率随电堆数量的变化[mHC=4 mol·kg-1,mLC=0.05 mol·kg-1,t =(25±1)℃]
Fig.7 Variations of the total net output power with the number of RED stacks under different flow velocity [mHC=4 mol·kg-1, mLC=0.05 mol·kg-1, t =(25±1)°C]
1 | Kang S B, Li J B, Wang Z H, et al. Salinity gradient energy capture for power production by reverse electrodialysis experiment in thermal desalination plants[J]. Journal of Power Sources, 2022, 519: 230806. |
2 | Post J W, Goeting C H, Valk J, et al. Towards implementation of reverse electrodialysis for power generation from salinity gradients[J]. Desalination and Water Treatment, 2010, 16(1/2/3): 182-193. |
3 | 袁亮. 我国煤炭主体能源安全高质量发展的理论技术思考[J]. 中国科学院院刊, 2023, 38(1): 11-22. |
Yuan L. Theory and technology considerations on high-quality development of coal main energy security in China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(1): 11-22. | |
4 | 李洪言, 张景谦, 陈健斌, 等. 2021年全球能源转型面临挑战: 基于《BP世界能源统计年鉴(2022)》[J]. 天然气与石油, 2022, 40(6): 129-138. |
Li H Y, Zhang J Q, Chen J B, et al. Global energy transition faces challenges in 2021—based on the BP Statistical Review of World Energy(2022)[J]. Natural Gas and Oil, 2022, 40(6): 129-138. | |
5 | Xia J B, Eigenberger G, Strathmann H, et al. Acid-base flow battery, based on reverse electrodialysis with Bi-polar membranes: stack experiments[J]. Processes, 2020, 8(1): 99. |
6 | 陈霞, 蒋晨啸, 汪耀明, 等. 反向电渗析在新能源及环境保护应用中的研究进展[J]. 化工学报, 2018, 69(1): 188-202. |
Chen X, Jiang C X, Wang Y M, et al. Advances in reverse electrodialysis and its applications on renewable energy and environment protection[J]. CIESC Journal, 2018, 69(1): 188-202. | |
7 | Tamburini A, Tedesco M, Cipollina A, et al. Reverse electrodialysis heat engine for sustainable power production[J]. Applied Energy, 2017, 206: 1334-1353. |
8 | Tian H L, Wang Y, Pei Y S, et al. Unique applications and improvements of reverse electrodialysis: a review and outlook[J]. Applied Energy, 2020, 262: 114482. |
9 | Tamburini A, La Barbera G, Cipollina A, et al. CFD prediction of scalar transport in thin channels for reverse electrodialysis[J]. Desalination and Water Treatment, 2015, 55(12): 3424-3445. |
10 | Altaee A, Zaragoza G, Drioli E, et al. Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process[J]. Applied Energy, 2017, 199: 359-369. |
11 | Kim H, Yang S, Choi J, et al. Optimization of the number of cell pairs to design efficient reverse electrodialysis stack[J]. Desalination, 2021, 497: 114676. |
12 | 刘子健, 鹿丁, 白银, 等. 反向电渗析热机发生单元研究进展[J]. 科学通报, 2021, 66(30): 3811-3821. |
Liu Z J, Lu D, Bai Y, et al. Progress on the regeneration unit of a reverse electrodialysis heat engine[J]. Chinese Science Bulletin, 2021, 66(30): 3811-3821. | |
13 | Simões C, Pintossi D, Saakes M, et al. Electrode segmentation in reverse electrodialysis: improved power and energy efficiency[J]. Desalination, 2020, 492: 114604. |
14 | Olkis C, Brandani S, Santori G. Adsorption reverse electrodialysis driven by power plant waste heat to generate electricity and provide cooling[J]. International Journal of Energy Research, 2021, 45(2): 1971-1987. |
15 | Liu Z J, Lu D, Bai Y, et al. Energy and exergy analysis of heat to salinity gradient power conversion in reverse electrodialysis heat engine[J]. Energy Conversion and Management, 2022, 252: 115068. |
16 | Giacalone F, Olkis C, Santori G, et al. Novel solutions for closed-loop reverse electrodialysis: thermodynamic characterisation and perspective analysis[J]. Energy, 2019, 166: 674-689. |
17 | Giacalone F, Catrini P, Tamburini A, et al. Exergy analysis of reverse electrodialysis[J]. Energy Conversion and Management, 2018, 164: 588-602. |
18 | Weiner A M, McGovern R K, Lienhard V J H. A new reverse electrodialysis design strategy which significantly reduces the levelized cost of electricity[J]. Journal of Membrane Science, 2015, 493: 605-614. |
19 | Moreno J, Díez V, Saakes M, et al. Mitigation of the effects of multivalent ion transport in reverse electrodialysis[J]. Journal of Membrane Science, 2018, 550: 155-162. |
20 | Guo Z Y, Ji Z Y, Zhang Y G, et al. Effect of ions (K+, Mg2+, Ca2+ and SO4 2-) and temperature on energy generation performance of reverse electrodialysis stack[J]. Electrochimica Acta, 2018, 290: 282-290. |
21 | Loeb S. Method and apparatus for generating power utilizing reverse electrodialysis: US4171409[P]. 1979-10-16. |
22 | Veerman J, Saakes M, Metz S J, et al. Reverse electrodialysis: a validated process model for design and optimization[J]. Chemical Engineering Journal, 2011, 166(1): 256-268. |
23 | Veerman J, Saakes M, Metz S J, et al. Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water[J]. Journal of Membrane Science, 2009, 327(1/2): 136-144. |
24 | Hu J Y, Xu S M, Wu X, et al. Multi-stage reverse electrodialysis: strategies to harvest salinity gradient energy[J]. Energy Conversion and Management, 2019, 183: 803-815. |
25 | Hu J Y, Xu S M, Wu X, et al. Experimental investigation on the performance of series control multi-stage reverse electrodialysis[J]. Energy Conversion and Management, 2020, 204: 112284. |
26 | Wang Z H, Li J B, Zhang C, et al. Power production from seawater and discharge brine of thermal desalination units by reverse electrodialysis[J]. Applied Energy, 2022, 314: 118977. |
27 | Daniilidis A, Vermaas D A, Herber R, et al. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis[J]. Renewable Energy, 2014, 64: 123-131. |
28 | Tedesco M, Brauns E, Cipollina A, et al. Reverse electrodialysis with saline waters and concentrated brines: a laboratory investigation towards technology scale-up[J]. Journal of Membrane Science, 2015, 492: 9-20. |
29 | Wang H, Li J B, Li M Q, et al. Reverse electrodialysis characteristic of the lithium bromide-ethanol-water ternary solution[J]. Journal of Power Sources, 2023, 585: 233636. |
30 | Micari M, Bevacqua M, Cipollina A, et al. Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications[J]. Journal of Membrane Science, 2018, 551: 315-325. |
31 | 胡亚丽, 胡军勇, 马素霞, 等. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
Hu Y L, Hu J Y, Ma S X, et al. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine[J]. CIESC Journal, 2023, 74(8): 3513-3521. | |
32 | Vermaas D A, Saakes M, Nijmeijer K. Doubled power density from salinity gradients at reduced intermembrane distance[J]. Environmental Science and Technology, 2011, 45(16): 7089-7095. |
33 | 王一玮. 反向电渗析盐差膜堆系统产电特性及其影响因素研究[D]. 西安: 西安理工大学, 2022. |
Wang Y W. Investigation on the power generation performance of a salt-difference stack system by reverse electrodialysis and its influencing factors[D]. Xi'an: Xi'an University of Technology, 2022. |
[1] | 张颂红, 赵欣怡, 楼小玲, 沈绍传, 贠军贤. 阳离子交换纳晶胶分离乳过氧化物酶的研究[J]. 化工学报, 2024, 75(7): 2574-2582. |
[2] | 苏彬, 董浩伟, 罗振敏, 邓军, 王涛, 程方明. 气粉两相体系爆炸动力学特性及机理研究进展[J]. 化工学报, 2024, 75(6): 2109-2122. |
[3] | 赵志星, 姚智豪, 于雪峰, 杨游胜, 曾英, 于旭东. 锂钠镁共存硫酸盐体系多温相图及其应用[J]. 化工学报, 2024, 75(6): 2123-2133. |
[4] | 许茹枫, 陈煜成, 高丹, 焦静雨, 高栋, 王海彬, 姚善泾, 林东强. 离子交换层析分离单抗电荷异质体的模型辅助过程优化[J]. 化工学报, 2024, 75(5): 1903-1911. |
[5] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
[6] | 王灵洁, 高海龙, 靳继鹏, 王志浩, 李见波. 海水中的污染物对逆电渗析电堆性能的影响[J]. 化工学报, 2024, 75(2): 695-705. |
[7] | 孙瑞, 田华, 吴子睿, 孙孝存, 舒歌群. 二氧化碳混合工质临界参数计算模型对比研究[J]. 化工学报, 2024, 75(2): 439-449. |
[8] | 吴凡, 彭旭东, 江锦波, 孟祥铠, 梁杨杨. 分子动力学模拟预测天然气密度和黏度的可行性研究[J]. 化工学报, 2024, 75(2): 450-462. |
[9] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[10] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[11] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[12] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[13] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[14] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[15] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 401
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||