化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2565-2573.DOI: 10.11949/0438-1157.20240120
王涛虹1(), 王超2, 李政1, 刘莹2, 田歌1, 常刚刚1(
), 阳晓宇1, 鲍宗必2
收稿日期:
2024-01-26
修回日期:
2024-05-23
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
常刚刚
作者简介:
王涛虹(2000—),女,硕士研究生,wangtaohong@whut.edu.cn
基金资助:
Taohong WANG1(), Chao WANG2, Zheng LI1, Ying LIU2, Ge TIAN1, Ganggang CHANG1(
), Xiaoyu YANG1, Zongbi BAO2
Received:
2024-01-26
Revised:
2024-05-23
Online:
2024-07-25
Published:
2024-08-09
Contact:
Ganggang CHANG
摘要:
金属有机框架材料作为常见的吸附剂,已被广泛地应用于乙烷和乙烯气体混合物的分离,其中引入金属离子所产生π-络合作用可以显著提高MOFs对乙烯的吸附能力。在双羟基功能化后的UiO-66中负载Cu(Ⅰ),得到了优先吸附乙烯的Cu(Ⅰ)@UiO-66-(OH)2吸附剂。羟基功能化的框架在增强极性的同时,可以与Cu(Ⅰ)产生协同效应,有效地提高了材料对乙烯/乙烷的吸附分离性能。得到的3%(质量分数)Cu(Ⅰ)@UiO-66-(OH)2在298 K及1 bar(1 bar=0.1 MPa)条件下的C2H4/C2H6 IAST选择性为2.98,约为纯UiO-66-(OH)2的3倍。单组分吸附实验证明3%Cu(Ⅰ)@UiO-66-(OH)2在整个压力范围下对乙烯的吸附容量均高于乙烷,并且其对乙烯的吸附热(42.81 kJ·mol-1)低于许多已报道的乙烯-选择性吸附剂。在模拟工业条件下对50/50(体积比)C2H4/C2H6混合物进行穿透实验,进一步表明了3%Cu(Ⅰ)@UiO-66-(OH)2吸附剂可以有效分离乙烷/乙烯混合物。
中图分类号:
王涛虹, 王超, 李政, 刘莹, 田歌, 常刚刚, 阳晓宇, 鲍宗必. 固载Cu(Ⅰ)的π络合MOF吸附剂用于乙烷/乙烯的选择性分离[J]. 化工学报, 2024, 75(7): 2565-2573.
Taohong WANG, Chao WANG, Zheng LI, Ying LIU, Ge TIAN, Ganggang CHANG, Xiaoyu YANG, Zongbi BAO. Immobilize Cu(Ⅰ) into π-complexed MOF adsorbent for selectivity separation of ethane/ethylene[J]. CIESC Journal, 2024, 75(7): 2565-2573.
图1 UiO-66-(OH)2(a)和3%Cu(Ⅰ)@UiO-66-(OH)2(b)的SEM图;3%Cu(Ⅰ)@UiO-66-(OH)2的EDS图(c);Cu(Ⅰ)@UiO-66-(OH)2的PXRD图(d)
Fig.1 SEM images of UiO-66-(OH)2 (a) and 3%Cu(Ⅰ)@UiO-66-(OH)2 (b); EDS diagram of 3%Cu(Ⅰ)@UiO-66-(OH)2 (c); PXRD pattern of Cu(Ⅰ)@UiO-66-(OH)2 (d)
图2 Cu(Ⅰ)@UiO-66-(OH)2在77 K下的N2吸附等温线(a);Cu(I)@UiO-66-(OH)2在298 K和1 bar下的单组分吸附等温线(b);3%Cu(Ⅰ)@UiO-66-(OH)2在不同温度下的单组分吸附-脱附等温线(c);乙烷和乙烯在3%Cu(Ⅰ)@UiO-66-(OH)2中的吸附热(d)[图(a)、(c)中空心球形代表脱附、实心球形代表吸附;图(b)中空心球形代表乙烷,实心球形代表乙烯]
Fig.2 N2 adsorption isotherm of Cu(Ⅰ)@UiO-66-(OH)2 at 77 K (a); Single-component adsorption isotherms of Cu(Ⅰ)@UiO-66-(OH)2 at 298 K and 1 bar (b); Single-component adsorption-desorption isotherms of 3%Cu(Ⅰ)@UiO-66-(OH)2 at different temperatures (c); Adsorption heats of C2H6 and C2H4 in 3%Cu(Ⅰ)@UiO-66-(OH)2 (d) [in figures (a) and (c), the hollow sphere represents desorption, the solid sphere represents adsorption; in figure (b), the hollow sphere represents ethane, the solid sphere represents ethylene]
样品名称 | CuCl浸渍量/mg | C2H6吸附量/(mmol·g-1) | C2H4吸附量/(mmol·g-1) | BET比表面积/(m2·g-1) |
---|---|---|---|---|
UiO-66-(OH)2 | — | 2.83 | 3.21 | 788.3 |
0.5%Cu(Ⅰ)@UiO-66-(OH)2 | 30 | 2.69 | 2.97 | 693.3 |
3%Cu(Ⅰ) @UiO-66-(OH)2 | 65 | 2.21 | 2.95 | 352.3 |
11%Cu(Ⅰ)@UiO-66-(OH)2 | 100 | 2.28 | 2.79 | 308.0 |
表1 UiO-66-(OH)2和不同负载量的Cu(Ⅰ)@UiO-66-(OH)2对C2H6和C2H4的吸附量及BET比表面积
Table 1 Adsorption capacity of C2H6 and C2H4 of UiO-66-(OH)2 and different loads of Cu(Ⅰ)@UiO-66-(OH)2 and their BET specific surface area
样品名称 | CuCl浸渍量/mg | C2H6吸附量/(mmol·g-1) | C2H4吸附量/(mmol·g-1) | BET比表面积/(m2·g-1) |
---|---|---|---|---|
UiO-66-(OH)2 | — | 2.83 | 3.21 | 788.3 |
0.5%Cu(Ⅰ)@UiO-66-(OH)2 | 30 | 2.69 | 2.97 | 693.3 |
3%Cu(Ⅰ) @UiO-66-(OH)2 | 65 | 2.21 | 2.95 | 352.3 |
11%Cu(Ⅰ)@UiO-66-(OH)2 | 100 | 2.28 | 2.79 | 308.0 |
吸附剂 | 吸附质 | q1/(cm3·g-1) | q2/(cm3·g-1) | b1 | b2 | R2 |
---|---|---|---|---|---|---|
UiO-66-(OH)2 | C2H4 | 3.416 | 1.896 | 0.136 | 0.007 | 0.999 |
C2H6 | 3.162 | 1.256 | 0.327 | 0.010 | 0.999 | |
3%Cu(Ⅰ)@UiO-66-(OH)2 | C2H4 | 4.008 | 0.747 | 0.397 | 0.013 | 0.999 |
C2H6 | 2.863 | 0.401 | 0.491 | 0.017 | 0.999 |
表2 UiO-66-(OH)2和3%Cu(Ⅰ)@UiO-66-(OH)2在298 K下对C2H4和C2H6的吸附等温线的Dual-Site Langmuir拟合参数
Table 2 Dual-Site Langmuir fitting parameters for adsorption isotherms of C2H4 and C2H6 of UiO-66-(OH)2 and 3%Cu(Ⅰ)@UiO-66-(OH)2 at 298 K
吸附剂 | 吸附质 | q1/(cm3·g-1) | q2/(cm3·g-1) | b1 | b2 | R2 |
---|---|---|---|---|---|---|
UiO-66-(OH)2 | C2H4 | 3.416 | 1.896 | 0.136 | 0.007 | 0.999 |
C2H6 | 3.162 | 1.256 | 0.327 | 0.010 | 0.999 | |
3%Cu(Ⅰ)@UiO-66-(OH)2 | C2H4 | 4.008 | 0.747 | 0.397 | 0.013 | 0.999 |
C2H6 | 2.863 | 0.401 | 0.491 | 0.017 | 0.999 |
图3 UiO-66-(OH)2和3%Cu(Ⅰ)@UiO-66-(OH)2的C2H4/C2H6选择性(a);3%Cu(Ⅰ)@UiO-66-(OH)2与其他类似材料的IAST对比(b)
Fig.3 C2H4/C2H6 selectivity of UiO-66-(OH)2 and 3%Cu(Ⅰ)@UiO-66-(OH)2 (a); IAST comparison of 3%Cu(Ⅰ)@UiO-66-(OH)2 with other similar materials (b)
图4 3%Cu(Ⅰ)@UiO-66-(OH)2在298 K和1 bar条件下C2H6/C2H4(50∶50,体积比)混合气体的动态穿透曲线(a)和5次乙烯循环吸附曲线(b);3%Cu(Ⅰ)@UiO-66-(OH)2循环前后的PXRD图(c)和N2吸附等温线(d)
Fig.4 Dynamic breakthrough curve of C2H6/C2H4 (50∶50, volume ratio) gas mixture (a) and 5 cycles adsorption curve for ethylene (b)of 3%Cu(Ⅰ)@UiO-66-(OH)2 at 298 K and 1 bar; PXRD pattern (c) and N2 adsorption isotherm (d) of 3%Cu(Ⅰ)@UiO-66-(OH)2 before and after multiple cycles
1 | Cho K H, Yoon J W, Lee J H, et al. Pore control of Al-based MIL-53 isomorphs for the preferential capture of ethane in an ethane/ethylene mixture[J]. Journal of Materials Chemistry A, 2021, 9(25): 14593-14600. |
2 | Amghizar I, Vandewalle L A, van Geem K M, et al. New trends in olefin production[J]. Engineering, 2017, 3(2): 171-178. |
3 | Ren T, Patel M, Blok K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes[J]. Energy, 2006, 31(4): 425-451. |
4 | Al-Douri A, Sengupta D, El-Halwagi M M. Shale gas monetization—a review of downstream processing to chemicals and fuels[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 436-455. |
5 | Haribal V P, Chen Y, Neal L, et al. Intensification of ethylene production from naphtha via a redox oxy-cracking scheme: process simulations and analysis[J]. Engineering, 2018, 4(5): 714-721. |
6 | Seifzadeh Haghighi S, Rahimpour M R, Raeissi S, et al. Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide[J]. Chemical Engineering Journal, 2013, 228: 1158-1167. |
7 | Liu P X, Wang Y, Chen Y, et al. Construction of saturated coordination titanium-based metal-organic framework for one-step C2H2/C2H6/C2H4 separation[J]. Separation and Purification Technology, 2021, 276: 119284. |
8 | Bao Z B, Chang G G, Xing H B, et al. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures[J]. Energy & Environmental Science, 2016, 9(12): 3612-3641. |
9 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
10 | He C H, Wang Y, Chen Y, et al. Direct functionalization of the open metal sites in rare earth-based metal-organic frameworks used for the efficient separation of ethylene[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 6123-6129. |
11 | Pei J Y, Wang J X, Shao K, et al. Engineering microporous ethane-trapping metal-organic frameworks for boosting ethane/ethylene separation[J]. Journal of Materials Chemistry A, 2020, 8(7): 3613-3620. |
12 | Wang Y T, Hao C L, Fan W D, et al. One-step ethylene purification from an acetylene/ethylene/ethane ternary mixture by cyclopentadiene cobalt-functionalized metal-organic frameworks[J]. Angewandte Chemie International Edition, 2021, 60(20): 11350-11358. |
13 | Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
14 | Li L B, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. |
15 | Eldridge R B. Olefin/paraffin separation technology: a review[J]. Industrial & Engineering Chemistry Research, 1993, 32(10): 2208-2212. |
16 | Liao P Q, Zhang W X, Zhang J P, et al. Efficient purification of ethene by an ethane-trapping metal-organic framework[J]. Nature Communications, 2015, 6: 8697. |
17 | Yuan D Q, Lu W G, Zhao D, et al. Highly stable porous polymer networks with exceptionally high gas-uptake capacities[J]. Advanced Materials, 2011, 23(32): 3723-3725. |
18 | Wang Y X, Peh S B, Zhao D. Alternatives to cryogenic distillation: advanced porous materials in adsorptive light olefin/paraffin separations[J]. Small, 2019, 15(25): e1900058. |
19 | de Baerdemaeker T, de Vos D. Trapdoors in zeolites[J]. Nature Chemistry, 2013, 5(2): 89-90. |
20 | Wanigarathna D J A, Gao J J, Takanami T, et al. Adsorption separation of R-22, R-32 and R-125 fluorocarbons using 4A molecular sieve zeolite[J]. ChemistrySelect, 2016, 1(13): 3718-3722. |
21 | Lee D, Zhang L, Oyama S T, et al. Synthesis, characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina[J]. Journal of Membrane Science, 2004, 231(1/2): 117-126. |
22 | Surwade S P, Smirnov S N, Vlassiouk I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnology, 2015, 10(5): 459-464. |
23 | Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation—a review[J]. Carbon, 2004, 42(2): 241-259. |
24 | Zhang X, Chen Z J, Liu X Y, et al. A historical overview of the activation and porosity of metal-organic frameworks[J]. Chemical Society Reviews, 2020, 49(20): 7406-7427. |
25 | 李建惠, 兰天昊, 陈杨, 等. MOF复合材料在气体吸附分离中的研究进展[J]. 化工学报, 2021, 72(1): 167-179. |
Li J H, Lan T H, Chen Y, et al. Research progress of MOF-based composites for gas adsorption and separation[J]. CIESC Journal, 2021, 72(1): 167-179. | |
26 | 安晓银, 鲁金明, 刘毅, 等. 双金属MOF-74的合成及其气体吸附分离性能研究[J]. 化工新型材料, 2020, 48(4): 185-190. |
An X Y, Lu J M, Liu Y, et al. Synthesis of bimetallic MOF-74 and its gas adsorption and separation properties[J]. New Chemical Materials, 2020, 48(4): 185-190. | |
27 | Severino M I, Al Mohtar A, Vieira Soares C, et al. MOFs with open metal(Ⅲ) sites for the environmental capture of polar volatile organic compounds[J]. Angewandte Chemie International Edition, 2023, 62(6): 2211583. |
28 | Sutton A L, Melag L, Sadiq M M, et al. Capture, storage, and release of oxygen by metal-organic frameworks (MOFs)[J]. Angewandte Chemie, 2022, 134(37): 2208305. |
29 | Cadiau A, Adil K, Bhatt P M, et al. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016, 353(6295): 137-140. |
30 | Furukawa H, Cordova K E, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): e1230444. |
31 | Ding Q, Zhang Z Q, Yu C, et al. Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework[J]. Science Advances, 2020, 6(15): eaaz4322. |
32 | Chang G G, Huang M H, Su Y, et al. Immobilization of Ag(Ⅰ) into a metal-organic framework with —SO3H sites for highly selective olefin-paraffin separation at room temperature[J]. Chemical Communications, 2015, 51(14): 2859-2862. |
33 | Cowan M G, McDanel W M, Funke H H, et al. High ethene/ethane selectivity in 2,2'-bipyridine-based silver(Ⅰ) complexes by removal of coordinated solvent[J]. Angewandte Chemie, 2015, 127(19): 5832-5835. |
34 | Wang Y X, Hu Z G, Cheng Y D, et al. Silver-decorated hafnium metal-organic framework for ethylene/ethane separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(15): 4508-4516. |
35 | Gu X W, Wang J X, Wu E Y, et al. Immobilization of Lewis basic sites into a stable ethane-selective MOF enabling one-step separation of ethylene from a ternary mixture[J]. Journal of the American Chemical Society, 2022, 144(6): 2614-2623. |
36 | Bloch E D, Queen W L, Krishna R, et al. Hydrocarbon separations in a metal-organic framework with open iron(Ⅱ) coordination sites[J]. Science, 2012, 335(6076): 1606-1610. |
37 | Bao Z B, Alnemrat S, Yu L, et al. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework[J]. Langmuir, 2011, 27(22): 13554-13562. |
38 | Chang G G, Bao Z B, Ren Q L, et al. Fabrication of cuprous nanoparticles in MIL-101: an efficient adsorbent for the separation of olefin-paraffin mixtures[J]. RSC Advances, 2014, 4(39): 20230-20233. |
39 | Zhang L, Li L B, Hu E L, et al. Boosting ethylene/ethane separation within copper(Ⅰ)-chelated metal-organic frameworks through tailor-made aperture and specific π-complexation[J]. Advanced Science, 2020, 7(2): 1901918. |
40 | Qazvini O T, Macreadie L K, Telfer S G. Effect of ligand functionalization on the separation of small hydrocarbons and CO2 by a series of MUF-15 analogues[J]. Chemistry of Materials, 2020, 32(15): 6744-6752. |
41 | Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
42 | Vermoortele F, Bueken B, Le Bars G, et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr)[J]. Journal of the American Chemical Society, 2013, 135(31): 11465-11468. |
43 | Chen S S, Liu J, Xu Y F, et al. Hydrogen storage properties of the novel crosslinked UiO-66-(OH)2 [J]. International Journal of Hydrogen Energy, 2018, 43(32): 15370-15377. |
44 | Rada Z H, Abid H R, Shang J, et al. Functionalized UiO-66 by single and binary (OH)2 and NO2 groups for uptake of CO2 and CH4 [J]. Industrial & Engineering Chemistry Research, 2016, 55(29): 7924-7932. |
45 | Li B Y, Zhang Y M, Krishna R, et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane[J]. Journal of the American Chemical Society, 2014, 136(24): 8654-8660. |
46 | Bao Z B, Wang J W, Zhang Z G, et al. Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal-organic frameworks[J]. Angewandte Chemie International Edition, 2018, 57(49): 16020-16025. |
47 | Lv D F, Chen J Y, Chen Y W, et al. Moisture stability of ethane-selective Ni(Ⅱ), Fe(Ⅲ), Zr(Ⅳ)-based metal-organic frameworks[J]. AIChE Journal, 2019, 65(8): e16616. |
[1] | 周文轩, 刘珍, 张福建, 张忠强. 高通量-高截留率时间维度膜法水处理机理研究[J]. 化工学报, 2024, 75(7): 2583-2593. |
[2] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[3] | 杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
[4] | 马林峰, 欧爱彤, 李志远, 李垚, 刘润泽, 吴晓乐, 徐景涛. Na2S改性生物炭高效吸附重金属离子:制备及吸附机理[J]. 化工学报, 2024, 75(7): 2594-2603. |
[5] | 齐琪, 郭利平, 石李明, 郑映, 潘鹏举. 山梨醇类成核剂改性聚丙烯及其共聚物的结晶行为与性能[J]. 化工学报, 2024, 75(7): 2688-2699. |
[6] | 陈彦伶, 袁炳志, 王丽伟, 张宸, 朱涵玉. 非平衡条件下金属氯化物-氨工质对的吸附动力学研究[J]. 化工学报, 2024, 75(6): 2252-2261. |
[7] | 王岩, 周佳文, 孙培亮, 陈勇, 齐元红, 彭冲. 磁性聚氨基噻唑吸附剂脱除水体Hg2+性能[J]. 化工学报, 2024, 75(6): 2283-2298. |
[8] | 冀钟, 赵彦玲, 陈雨濛, 高林霞, 王翼鹏, 刘欢. ZSM-5分子筛对典型涂装VOCs的吸附性能及机理研究[J]. 化工学报, 2024, 75(6): 2332-2343. |
[9] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
[10] | 李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301. |
[11] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
[12] | 孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629. |
[13] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[14] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
[15] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 382
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||