化工学报 ›› 2024, Vol. 75 ›› Issue (6): 2109-2122.DOI: 10.11949/0438-1157.20240146
苏彬1,2(), 董浩伟1(
), 罗振敏1,2(
), 邓军1,2, 王涛1,2, 程方明1,2
收稿日期:
2024-01-30
修回日期:
2024-04-09
出版日期:
2024-06-25
发布日期:
2024-07-03
通讯作者:
董浩伟,罗振敏
作者简介:
苏彬(1993—),男,博士,讲师,su_bin@xust.edu.cn
基金资助:
Bin SU1,2(), Haowei DONG1(
), Zhenmin LUO1,2(
), Jun DENG1,2, Tao WANG1,2, Fangming CHENG1,2
Received:
2024-01-30
Revised:
2024-04-09
Online:
2024-06-25
Published:
2024-07-03
Contact:
Haowei DONG, Zhenmin LUO
摘要:
可燃性粉尘与易燃易爆气体广泛存在于工贸行业的各个环节之中,即使当粉尘和气体浓度都低于爆炸下限时,混合体系仍有发生爆炸的可能性,所以与单一粉尘或气体相比,气粉两相体系具有更高的爆炸危险性。主要从气粉两相体系的爆炸条件、爆炸效应以及爆炸机理三方面分析总结了两相体系爆炸敏感度参数、爆炸强度参数、火焰传播特性变化规律及其爆炸反应机理。研究结果表明,气粉两相体系的爆炸特性主要是受粉体粒径、粉体浓度、粉体物理化学特性、可燃气体浓度等多因素的共同影响,且不同体系之间具有较大差异性。此外,依据粉体热稳定性将两相体系分为两大类别,并分别探讨了其爆炸机理。基于此,对气粉两相体系爆炸防控亟待解决的方向和今后研究重点进行展望,为工矿气粉涉爆企业的安全生产提供理论指导。
中图分类号:
苏彬, 董浩伟, 罗振敏, 邓军, 王涛, 程方明. 气粉两相体系爆炸动力学特性及机理研究进展[J]. 化工学报, 2024, 75(6): 2109-2122.
Bin SU, Haowei DONG, Zhenmin LUO, Jun DENG, Tao WANG, Fangming CHENG. Research progress on explosion dynamic characteristics and mechanism of hybrid mixtures[J]. CIESC Journal, 2024, 75(6): 2109-2122.
年份 | 地点 | 物质种类 | 事故后果 |
---|---|---|---|
1985 | 中国辽宁省沈阳市 | 煤尘、瓦斯 | 死亡36人,受伤13人 |
1989 | 美国德克萨斯州 | 聚乙烯粉尘、乙烯、异丁烷 | 死亡23人,受伤314人 |
1993 | 中国河北省磁县 | 煤尘、瓦斯 | 死亡25人,受伤10人 |
2002 | 中国辽宁省 | 聚乙烯粉尘、乙烯 | 死亡8人,受伤19人 |
2013 | 中国新疆昌吉回族自治州 | 煤尘、瓦斯 | 死亡22人,受伤1人 |
2014 | 中国江苏省昆山市 | 铝粉、氢气 | 死亡97人,受伤163人 |
2016 | 中国重庆市 | 煤尘、瓦斯 | 死亡33人,受伤1人 |
2018 | 中国北京市 | 镁粉、氢气 | 死亡3人,受伤0人 |
2019 | 中国陕西省神木市 | 煤尘、瓦斯 | 死亡21人,受伤10人 |
2019 | 中国江苏省昆山市 | 镁合金粉、氢气 | 死亡7人,受伤5人 |
2021 | 中国江苏省南京市 | 铝粉、镁粉、镁铝合金粉、氢气 | 死亡2人,受伤9人 |
2021 | 俄罗斯西伯利亚联邦区 | 煤尘、瓦斯 | 死亡52人,受伤63人 |
2023 | 中国广东省东莞市 | 铝合金粉、氢气 | 死亡0人,受伤3人 |
2023 | 中国上海市 | 铝镁合金粉、氢气 | 死亡2人,受伤2人 |
2024 | 中国江苏省常州市 | 铝合金粉、氢气 | 死亡8人,受伤8人 |
表1 气粉两相体系爆炸事故统计
Table 1 Explosion accident statistics of hybrid mixture
年份 | 地点 | 物质种类 | 事故后果 |
---|---|---|---|
1985 | 中国辽宁省沈阳市 | 煤尘、瓦斯 | 死亡36人,受伤13人 |
1989 | 美国德克萨斯州 | 聚乙烯粉尘、乙烯、异丁烷 | 死亡23人,受伤314人 |
1993 | 中国河北省磁县 | 煤尘、瓦斯 | 死亡25人,受伤10人 |
2002 | 中国辽宁省 | 聚乙烯粉尘、乙烯 | 死亡8人,受伤19人 |
2013 | 中国新疆昌吉回族自治州 | 煤尘、瓦斯 | 死亡22人,受伤1人 |
2014 | 中国江苏省昆山市 | 铝粉、氢气 | 死亡97人,受伤163人 |
2016 | 中国重庆市 | 煤尘、瓦斯 | 死亡33人,受伤1人 |
2018 | 中国北京市 | 镁粉、氢气 | 死亡3人,受伤0人 |
2019 | 中国陕西省神木市 | 煤尘、瓦斯 | 死亡21人,受伤10人 |
2019 | 中国江苏省昆山市 | 镁合金粉、氢气 | 死亡7人,受伤5人 |
2021 | 中国江苏省南京市 | 铝粉、镁粉、镁铝合金粉、氢气 | 死亡2人,受伤9人 |
2021 | 俄罗斯西伯利亚联邦区 | 煤尘、瓦斯 | 死亡52人,受伤63人 |
2023 | 中国广东省东莞市 | 铝合金粉、氢气 | 死亡0人,受伤3人 |
2023 | 中国上海市 | 铝镁合金粉、氢气 | 死亡2人,受伤2人 |
2024 | 中国江苏省常州市 | 铝合金粉、氢气 | 死亡8人,受伤8人 |
时间 | 爆炸下限预测模型 | 特点 | 文献 |
---|---|---|---|
1985年 | 首次将MEC、LEL与两相体系中的气体体积分数和粉尘质量浓度联立 | [ | |
2012年 | 随着粉体浓度增加,HMEC并非线性降低,符合二阶曲线方程的规律 | [ | |
2015年 | 引入点火能量与湍流两个影响因素,并结合爆炸指数K | [ | |
2018年 | 引入极限因子η,关联了粉体与气体的最大爆炸压力和爆炸指数 | [ |
表2 气粉两相体系爆炸下限的预测模型
Table 2 Prediction model of lower explosive limit of hybrid mixture
时间 | 爆炸下限预测模型 | 特点 | 文献 |
---|---|---|---|
1985年 | 首次将MEC、LEL与两相体系中的气体体积分数和粉尘质量浓度联立 | [ | |
2012年 | 随着粉体浓度增加,HMEC并非线性降低,符合二阶曲线方程的规律 | [ | |
2015年 | 引入点火能量与湍流两个影响因素,并结合爆炸指数K | [ | |
2018年 | 引入极限因子η,关联了粉体与气体的最大爆炸压力和爆炸指数 | [ |
时间 | 最小点火能预测模型 | 特点 | 文献 |
---|---|---|---|
1998年 | 采用Bartknecht的测试结果提出半经验公式 | [ | |
2012年 | 低于粉体爆炸下限后对MIE预测进行了修正 | [ | |
2016年 | 提出直径、绝热火焰温度和临界点火内核的影响 | [ |
表3 气粉两相体系最小点火能的预测模型
Table 3 Prediction model of minimum ignition energy of hybrid mixture
时间 | 最小点火能预测模型 | 特点 | 文献 |
---|---|---|---|
1998年 | 采用Bartknecht的测试结果提出半经验公式 | [ | |
2012年 | 低于粉体爆炸下限后对MIE预测进行了修正 | [ | |
2016年 | 提出直径、绝热火焰温度和临界点火内核的影响 | [ |
1 | Gan B, Li B, Jiang H P, et al. Ethylene/polyethylene hybrid explosions(part 1): Effects of ethylene concentrations on flame propagations[J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 93-102. |
2 | 刘贞堂, 周西方, 林松, 等. 我国工业粉尘爆炸事故统计及趋势分析[J]. 消防科学与技术, 2020, 39(6): 879-882. |
Liu Z T, Zhou X F, Lin S, et al. Statistics and trend analysis of industrial dust explosion accidents in China[J]. Fire Science and Technology, 2020, 39(6): 879-882. | |
3 | 陈刚, 张晓蕾, 徐帅, 等. 我国2005—2020年粉尘爆炸事故统计分析[J]. 中国安全科学学报, 2022, 32(8): 76-83. |
Chen G, Zhang X L, Xu S, et al. Statistical analysis on dust explosion accidents in China from 2005 to 2020[J]. China Safety Science Journal, 2022, 32(8): 76-83. | |
4 | 张晓蕾, 陈刚, 徐帅, 等. 中美粉尘爆炸事故统计和管理体系对比研究[J]. 安全与环境学报, 2023, 23(8): 2769-2779. |
Zhang X L, Chen G, Xu S, et al. Comparative study on dust explosion accident statistics and management system between China and the United States[J]. Journal of Safety and Environment, 2023, 23(8): 2769-2779. | |
5 | 陈爱英, 王琪, 安然. 浅谈粉尘爆炸特征及事故预防措施[J]. 化工管理, 2014(23): 57. |
Chen A Y, Wang Q, An R. A brief discussion on the characteristics of dust explosion and accident prevention measures[J]. Chemical Management, 2014(23): 57. | |
6 | 孙会利. 可燃气体/粉尘两相爆炸特性实验研究[D]. 大连: 大连理工大学, 2017. |
Sun H L. Experimental investigation into the explosibility of hybrid mixtures of flammable gas and dust[D]. Dalian: Dalian University of Technology, 2017. | |
7 | 费金彪, 文虎. 大佛寺矿煤自燃多参数预报指标研究分析[J]. 煤炭技术, 2017, 36(12): 111-113. |
Fei J B, Wen H. Research and analysis on multi-parameter prediction index of coal spontaneous combustion in dafosi coal mine[J]. Coal Technology, 2017, 36(12): 111-113. | |
8 | 李永怀, 蔡周全. 一起特别重大瓦斯煤尘爆炸事故分析[J]. 煤矿安全, 2010, 41(8): 114-116. |
Li Y H, Cai Z Q. Analysis of a particularly serious gas and coal dust explosion accident[J]. Safety in Coal Mines, 2010, 41(8): 114-116. | |
9 | 赵钰. 低密度聚乙烯粉尘/乙烯混合物爆炸特性及惰化研究[D]. 北京: 北京石油化工学院, 2020. |
Zhao Y. Study on explosion characteristics and inertion of low-density polyethylene dust/ethylene gas hybrid mixture[D]. Beijing: Beijing Institute of Petrochemical Technology, 2020. | |
10 | 叶亚明, 梁峻, 江湖一佳, 等. 镁粉尘燃烧爆炸研究进展[J]. 消防科学与技术, 2019, 38(7): 921-925. |
Ye Y M, Liang J, Jianghu Y J, et al. Research progress on Mg dust combustion explosion[J]. Fire Science and Technology, 2019, 38(7): 921-925. | |
11 | 李雨成, 富健涛, 奇佳民, 等. 密闭空间镁粉爆炸压力特性研究[J]. 爆破, 2018, 35(3): 114-119. |
Li Y C, Fu J T, Ji J M, et al. Pressure characteristics of magnesium powder explosion in confined space[J]. Blasting, 2018, 35(3): 114-119. | |
12 | Tsai Y T, Huang G T, Zhao J Q, et al. Dust cloud explosion characteristics and mechanisms in MgH2-based hydrogen storage materials[J]. AIChE Journal, 2021, 67(8): e17302. |
13 | 汤其建, 秦汝祥, 戴广龙. 索特平均直径对煤粉及其在瓦斯气氛下爆炸特性的影响[J]. 煤炭学报, 2021, 46(2): 489-497. |
Tang Q J, Qin R X, Dai G L. Effect of Sauter mean diameter of coal dust on its explosibility with and without methane gas[J]. Journal of China Coal Society, 2021, 46(2): 489-497. | |
14 | 陈彪, 冯萧, 张皓天, 等. 超细水雾抑制甲烷-煤尘复合爆炸的实验研究[J]. 消防科学与技术, 2021, 40(7): 1046-1051. |
Chen B, Feng X, Zhang H T, et al. Experimental study on suppression of methane-coal dust compound explosion by ultra-fine water mist[J]. Fire Science and Technology, 2021, 40(7): 1046-1051. | |
15 | Wang Y, Qi Y Q, Gan X Y, et al. Influences of coal dust components on the explosibility of hybrid mixtures of methane and coal dust[J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104222. |
16 | Ji W T, Yu J L, Yu X Z, et al. Experimental investigation into the vented hybrid mixture explosions of lycopodium dust and methane[J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 102-111. |
17 | 覃小玲, 李晓泉. 粮食粉尘爆炸事故统计分析[J]. 工业安全与环保, 2020, 46(5): 78-82. |
Qin X L, Li X Q. Statistical analysis of accidents grain dust explosion[J]. Industrial Safety and Environmental Protection, 2020, 46(5): 78-82. | |
18 | 甘波, 高伟, 张新燕, 等. 甲烷浓度对PMMA/甲烷混合爆炸下限及预热区厚度的影响分析[J]. 爆炸与冲击, 2019, 39(2): 188-195. |
Gan B, Gao W, Zhang X Y, et al. Effect of methane concentration on lower explosive limit of PMMA/methane mixture and thickness of preheating zone[J]. Explosion and Shock Waves, 2019, 39(2): 188-195. | |
19 | 景国勋, 段振伟, 程磊, 等. 瓦斯煤尘爆炸特性及传播规律研究进展[J]. 中国安全科学学报, 2009, 19(4): 67-72. |
Jing G X, Duan Z W, Cheng L, et al. Research progress in explosion characteristics and spread law of gas and coal dust[J]. China Safety Science Journal, 2009, 19(4): 67-72. | |
20 | 蔡周全, 罗振敏, 程方明. 瓦斯煤尘爆炸传播特性的实验研究[J]. 煤炭学报, 2009, 34(7): 938-941. |
Cai Z Q, Luo Z M, Cheng F M. Experimental study on propagation characteristics of gas/coal dust explosion[J]. Journal of China Coal Society, 2009, 34(7): 938-941. | |
21 | 祁畅. 甲烷、丙烷对PMMA、ABS粉尘爆炸特性的影响研究[D]. 徐州: 中国矿业大学, 2020. |
Qi C. Influences of methane and propane on the explosion characteristics of PMMA and ABS dust[D]. Xuzhou: China University of Mining and Technology, 2020. | |
22 | Yu X, Zhang Z, Yan X, et al. Explosion characteristics and combustion mechanism of hydrogen/tungsten dust hybrid mixtures[J]. Fuel, 2023, 332: 126017. |
23 | Gan B, Li B, Jiang H P, et al. Ethylene/polyethylene hybrid explosions(part 2): Effects of polyethylene particle size distributions on flame propagations[J]. Journal of Loss Prevention in the Process Industries, 2018, 55: 134-143. |
24 | Bartknecht W. Explosions[M]. Berlin: Springer Berlin Heidelberg, 1981. |
25 | Cashdollar K L, Hertzberg M. 20-L explosibility test chamber for dusts and gases[J]. Review of Scientific Instruments, 1985, 56(4): 596-602. |
26 | Garcia-Agreda A, Di Benedetto A, Russo P, et al. Dust/gas mixtures explosion regimes[J]. Powder Technology, 2011, 205(1/2/3): 81-86. |
27 | Di Benedetto A, Garcia-Agreda A, Russo P, et al. Combined effect of ignition energy and initial turbulence on the explosion behavior of lean gas/dust-air mixtures[J]. Industrial & Engineering Chemistry Research, 2012, 51(22): 7663-7670. |
28 | Sanchirico R, Russo P, Saliva A, et al. Explosion of lycopodium-nicotinic acid-methane complex hybrid mixtures[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 505-508. |
29 | Pang L, Cao J J, Zhao Y, et al. Minimum ignition energy of LDPE dust/ethylene hybrid mixture[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104546. |
30 | Addai E K, Gabel D, Krause U. Explosion characteristics of three component hybrid mixtures[J]. Process Safety and Environmental Protection, 2015, 98: 72-81. |
31 | 王磊, 李润之. 瓦斯、煤尘共存条件下爆炸极限变化规律实验研究[J]. 中国矿业, 2016, 25(4): 87-90. |
Wang L, Li R Z. Experimental study on the explosion limits change laws under gas and coal dust coexisting conditions[J]. China Mining Magazine, 2016, 25(4): 87-90. | |
32 | 李润之. 瓦斯煤尘共存条件下的煤尘云爆炸下限[J]. 爆炸与冲击, 2018, 38(4): 913-917. |
Li R Z. Minimum explosive concentration of coal dust cloud in the coexistence of gas and coal dust[J]. Explosion and Shock Waves, 2018, 38(4): 913-917. | |
33 | 王者鹏. 低浓度瓦斯对煤尘爆炸下限的影响研究[J]. 煤矿安全, 2017, 48(2): 26-27, 32. |
Wang Z P. Study on influence of low concentration gas on lower explosive limit of coal dust[J]. Safety in Coal Mines, 2017, 48(2): 26-27, 32. | |
34 | 王燕, 齐英全, 温小萍, 等. 煤尘组分对瓦斯/煤尘复合爆炸下限的影响研究[J]. 煤炭科学技术, 2020, 48(2): 125-130. |
Wang Y, Qi Y Q, Wen X P, et al. Influence study of coal dust composition on the lower explosion limit of hybrid mixture of gas and coal dust[J]. Coal Science and Technology, 2020, 48(2): 125-130. | |
35 | Yu L F, Li G, Liu W C, et al. Experimental investigations on ignition sensitivity of hybrid mixtures of oil shale dust and syngas[J]. Fuel, 2017, 210: 1-7. |
36 | Jiang J J, Liu Y, Mashuga C V, et al. Validation of a new formula for predicting the lower flammability limit of hybrid mixtures[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 52-58. |
37 | Ji W T, Wang Y, Yang J J, et al. Methods to predict variations of lower explosion limit associated with hybrid mixtures of flammable gas and dust[J]. Fuel, 2022, 310: 122138. |
38 | Bartknecht W. Explosions: Course, Prevention, Protection[M]. Berlin: Springer Science & Business Media,2012. |
39 | 张欣, 张琰, 任常兴, 等. 可燃气体最小点火能测试方法与影响因素探讨[J]. 消防科学与技术, 2020, 39(4): 431-434. |
Zhang X, Zhang Y, Ren C X, et al. Test method and influence analysis on the minimum ignition energy of flammable gas[J]. Fire Science and Technology, 2020, 39(4): 431-434. | |
40 | 王志宇, 杨遂军, 栾伟玲, 等. 粉尘云最小点火能测试技术综述[J]. 科学技术与工程, 2023, 23(4): 1357-1369. |
Wang Z Y, Yang S J, Luan W L, et al. Review on the test of minimum ignition energies of dust clouds[J]. Science Technology and Engineering, 2023, 23(4): 1357-1369. | |
41 | Eckhoff R K. Understanding dust explosions. The role of powder science and technology[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 105-116. |
42 | Britton L G. Short communication: estimating the minimum ignition energy of hybrid mixtures[J]. Process Safety Progress, 1998, 17(2): 124-126. |
43 | 王陈. 甲烷对煤尘爆炸特性影响的研究[C]//工业粉尘防爆与治理-全国工业粉尘防爆与治理学术讨论会论文集. 北京: 中国科学技术出版社, 1990: 449-457. |
Wang C. Study on the effect of methane on the explosion characteristics of coal dust[C]//Industrial Dust Explosion Prevention and Control-Proceedings of the National Symposium on Industrial Dust Explosion Prevention and Control. Beijing: Science and Technology Press of China, 1990: 449-457. | |
44 | 何朝远. 瓦斯煤尘共存条件下爆炸危险性的研究[J]. 煤矿安全, 1996, 27(12): 5-6, 22. |
He C Y. Study on explosion risk under the coexistence of gas and coal dust[J]. Safety In Coal Mines, 1996, 27(12): 5-6, 22. | |
45 | 司荣军, 牛宜辉, 王磊, 等. 煤矿瓦斯煤尘爆炸的动力学特性研究进展[J]. 工程爆破, 2023, 29(1): 30-39. |
Si R J, Niu Y H, Wang L, et al. Research progress on dynamic characteristics of coal mine gas and dust explosion[J]. Engineering Blasting, 2023, 29(1): 30-39. | |
46 | Addai E K, Gabel D, Krause U. Models to estimate the minimum ignition temperature of dusts and hybrid mixtures[J]. Journal of Hazardous Materials, 2016, 304: 73-83. |
47 | 李刚, 平洋, 吴卫卫, 等. 瓦斯煤粉耦合体系着火实验研究[J]. 煤炭学报, 2013, 38(8): 1388-1391. |
Li G, Ping Y, Wu W W, et al. Experimental study on the ignition of the coupling system of coal gas and coal dust[J]. Journal of China Coal Society, 2013, 38(8): 1388-1391. | |
48 | Addai E K, Gabel D, Krause U. Experimental investigation on the minimum ignition temperature of hybrid mixtures of dusts and gases or solvents[J]. Journal of Hazardous Materials, 2016, 301: 314-326. |
49 | 徐伟巍, 熊静文, 刘柏清, 等. 酒精蒸气/烟草粉尘两相混合体系最小点火能试验研究[J]. 火灾科学, 2022, 31(3): 137-142. |
Xu W W, Xiong J W, Liu B Q, et al. Experimental study on the minimum ignition energy of hybrid mixtures of alcohol vapor and tobacco dust[J]. Fire Safety Science, 2022, 31(3): 137-142. | |
50 | Khalili I, Dufaud O, Poupeau M, et al. Ignition sensitivity of gas-vapor/dust hybrid mixtures[J]. Powder Technology, 2012, 217: 199-206. |
51 | Addai E K, Gabel D, Kamal M, et al. Minimum ignition energy of hybrid mixtures of combustible dusts and gases[J]. Process Safety and Environmental Protection, 2016, 102: 503-512. |
52 | 李延鸿. 粉尘爆炸的基本特征[J]. 科技情报开发与经济, 2005(14): 130-131. |
Li Y H. Basic features of the dust explosion[J]. Sci-Tech Information Development & Economy, 2005(14): 130-131. | |
53 | 纪文涛. 气粉两相混合体系爆炸及泄放特性研究[D]. 大连: 大连理工大学, 2018. |
Ji W T. Investigation on the explosibility and explosion venting characteristics of hybrid mixtures[D]. Dalian: Dalian University of Technology, 2018. | |
54 | Amyotte P R, Mintz K J, Pegg M J, et al. Laboratory investigation of the dust explosibility characteristics of three Nova Scotia coals[J]. Journal of Loss Prevention in the Process Industries, 1991, 4(2): 102-109. |
55 | 许航. 水平管道内甲烷-煤尘复合爆炸压力研究[D]. 太原: 中北大学, 2013. |
Xu H. Research on methane-coal dust compound explosion pressure in horizontal pipe[D]. Taiyuan: North University of China, 2013. | |
56 | 游天龙, 谭迎新, 许航. 水平管道内甲烷-煤尘混合爆炸压力的研究[J]. 中北大学学报(自然科学版), 2014, 35(4): 449-452. |
You T L, Tan Y X, Xu H. Study on methane-coal dust explosion pressure in a horizontal pipeline[J]. Journal of North University of China (Natural Science Edition), 2014, 35(4): 449-452. | |
57 | 喻健良, 纪文涛, 孙会利, 等. 乙烯/聚乙烯两相体系爆炸特性[J]. 化工学报, 2017, 68(12): 4841-4847. |
Yu J L, Ji W T, Sun H L, et al. Explosibility of hybrid mixtures of ethylene and polyethelene dust[J]. CIESC Journal, 2017, 68(12): 4841-4847. | |
58 | 司荣军, 王春秋. 瓦斯对煤尘爆炸特性影响的实验研究[J]. 中国安全科学学报, 2006, 16(12): 86-91, 169. |
Si R J, Wang C Q. Experimental research on the influence of gas on the character coal dust explosion[J]. China Safety Science Journal, 2006, 16(12): 86-91, 169. | |
59 | Song S X, Cheng Y F, Meng X R, et al. Hybrid CH4/coal dust explosions in a 20-L spherical vessel[J]. Process Safety and Environmental Protection, 2019, 122: 281-287. |
60 | Niu Y H, Zhang L L, Shi B M. Experimental study on the explosion-propagation law of coal dust with different moisture contents induced by methane explosion[J]. Powder Technology, 2020, 361: 507-511. |
61 | Guo C W, Shao H, Jiang S G, et al. Effect of low-concentration coal dust on gas explosion propagation law[J]. Powder Technology, 2020, 367: 243-252. |
62 | Zhang L, Wang H Y, Chen C, et al. Experimental study to assess the explosion hazard of CH4/coal dust mixtures induced by high-temperature source surface[J]. Process Safety and Environmental Protection, 2021, 154: 60-71. |
63 | Liu Q M, Hu Y L, Bai C H, et al. Methane/coal dust/air explosions and their suppression by solid particle suppressing agents in a large-scale experimental tube[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 310-316. |
64 | 冯永安, 胡双启, 胡立双, 等. 基于20 L球形爆炸装置的甲烷煤尘混合爆炸实验[J]. 中国安全生产科学技术, 2012, 8(7): 16-19. |
Feng Y A, Hu S Q, Hu L S, et al. Coal dust/methane mixtures explosion experiment based on 20 L spherical explosive device[J]. Journal of Safety Science and Technology, 2012, 8(7): 16-19. | |
65 | 喻健良, 孙会利, 纪文涛, 等. 甲烷/石松子两相混合体系爆炸强度参数[J]. 爆炸与冲击, 2018, 38(1): 92-97. |
Yu J L, Sun H L, Ji W T, et al. Explosion severity parameters of hybrid mixture of methane and lycopodium dust[J]. Explosion and Shock Waves, 2018, 38(1): 92-97. | |
66 | Yu X Z, Yu J L, Wang C Y, et al. Experimental study on the overpressure and flame propagation of hybrid hydrogen/aluminum dust explosions in a square closed vessel[J]. Fuel, 2021, 285: 119222. |
67 | Ji W T, Gan X Y, Li L, et al. Prediction of the explosion severity of hybrid mixtures[J]. Powder Technology, 2022, 400: 117273. |
68 | Pico P, Ratkovich N, Muñoz F, et al. Analysis of the explosion behaviour of wheat starch/pyrolysis gases hybrid mixtures through experimentation and CFD-DPM simulations[J]. Powder Technology, 2020, 374: 330-347. |
69 | Yu X Z, Yu J L, Zhang X Y, et al. Combustion behaviors and residues characteristics in hydrogen/aluminum dust hybrid explosions[J]. Process Safety and Environmental Protection, 2020, 134: 343-352. |
70 | Denkevits A, Hoess B. Hybrid H2/Al dust explosions in Siwek sphere[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 509-521. |
71 | Dufaud O, Perrin L, Traore M, et al. Explosions of vapour/dust hybrid mixtures: a particular class[J]. Powder Technology, 2009, 190(1/2): 269-273. |
72 | Mittal M. Explosion characteristics of micron- and nano-size magnesium powders[J]. Journal of Loss Prevention in the Process Industries, 2014, 27: 55-64. |
73 | 凤文桢, 熊新宇, 高凯, 等. 点火延迟时间对镁粉尘云爆炸特性影响研究[J]. 消防科学与技术, 2021, 40(1): 25-28. |
Feng W Z, Xiong X Y, Gao K, et al. Influence of ignition delay time on explosion characteristics of magnesium dust cloud[J]. Fire Science and Technology, 2021, 40(1): 25-28. | |
74 | Li N, Zhang Y S, Guo R, et al. Effect of stearic acid coating on the explosion characteristics of aluminum dust[J]. Fuel, 2022, 320: 123880. |
75 | Choi K, Sakasai H, Nishimura K. Minimum ignition energies of pure magnesium powders due to electrostatic discharges and nitrogen's effect[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 144-146. |
76 | 秦友花, 陆守香, 于春红, 等. 障碍物与煤尘对气体火焰传播过程影响的实验研究[J]. 煤矿安全, 1999, 30(10): 41-43. |
Qin Y H, Lu S X, Yu C H, et al. The experimental study of influence of obstacles and coal on the flame propagation[J]. Safety in Coal Mines, 1999, 30(10): 41-43. | |
77 | 毕明树, 李江波. 密闭管内甲烷-煤粉复合爆炸火焰传播规律的实验研究[J]. 煤炭学报, 2010, 35(8): 1298-1302. |
Bi M S, Li J B. Flame propagation of methane-coal dust explosion in closed vessel[J]. Journal of China Coal Society, 2010, 35(8): 1298-1302. | |
78 | 牛芳, 刘庆明, 白春华, 等. 甲烷-煤尘爆炸物火焰传播特性[J]. 高压物理学报, 2012, 26(4): 455-461. |
Niu F, Liu Q M, Bai C H, et al. Flame propagation and combustion in methane-coal-air mixture[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 455-461. | |
79 | 任少峰, 陈先锋, 王玉杰, 等. 无约束泄爆对甲烷/空气火焰传播特性影响的试验研究[J]. 中国安全科学学报, 2013, 23(4): 84-88. |
Ren S F, Chen X F, Wang Y J, et al. Experimental study on effect of unconstrained explosion venting on methane-air flame propagation characteristics[J]. China Safety Science Journal, 2013, 23(4): 84-88. | |
80 | 徐进生, 陈先锋, 李登科, 等. 甲烷/空气预混气体泄爆过程的动力学研究[J]. 工业安全与环保, 2013, 39(4): 22-24. |
Xu J S, Chen X F, Li D K, et al. Study on the dynamic characteristics of methane/air premixed explosion venting[J]. Industrial Safety and Environmental Protection, 2013, 39(4): 22-24. | |
81 | 景国勋, 邵泓源, 吴昱楼, 等. 半封闭管道内瓦斯煤尘爆炸火焰传播特性试验[J]. 安全与环境学报, 2020, 20(4): 1321-1326. |
Jing G X, Shao H Y, Wu Y L, et al. Experimental approach to the flame propagation features of the explosive gas and coal dust in the semi-enclosed pipeline[J]. Journal of Safety and Environment, 2020, 20(4): 1321-1326. | |
82 | 裴蓓, 朱知印, 余明高, 等. 瓦斯/煤尘爆炸初期复合火焰加速及灾害强化机制分析[J]. 工程热物理学报, 2021, 42(7): 1879-1886. |
Pei B, Zhu Z Y, Yu M G, et al. Analysis on the acceleration of composite flame and the strengthening mechanism of disaster in the initial stage of gas/coal dust explosion[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1879-1886. | |
83 | 谭迎新, 郭家鑫, 刘毅飞, 等. 惰性气体对煤层气-煤粉混合燃烧火焰的影响[J]. 测试技术学报, 2022, 36(6): 492-497. |
Tan Y X, Guo J X, Liu Y F, et al. Effect of inert gas on combustion flame of coalbed gas-coal dust mixture[J]. Journal of Test and Measurement Technology, 2022, 36(6): 492-497. | |
84 | 周永浩, 甘波, 姜海鹏, 等. 甲烷/煤尘复合爆炸火焰的传播特性[J]. 爆炸与冲击, 2022, 42(1): 167-175. |
Zhou Y H, Gan B, Jiang H P, et al. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion and Shock Waves, 2022, 42(1): 167-175. | |
85 | 于小哲. 氢气/铝粉混合体系爆炸特性及火焰传播机理研究[D]. 大连: 大连理工大学, 2020. |
Yu X Z. Explosion characteristics and flame propagation mechanism of hydrogen/aluminum dust hybrid mixtures[D]. Dalian: Dalian University of Technology, 2020. | |
86 | Wang H Y, Zhang Y W, Xu J D, et al. Experimental study on effect of dilute coal dust on gas explosion pressure/flame evolution process[J]. Powder Technology, 2022: 117450. |
87 | 李海涛, 陈晓坤, 邓军, 等. 湍流状态下竖直管道内甲烷-煤尘预混特征及爆炸过程数值模拟[J]. 煤炭学报, 2018, 43(6): 1769-1779. |
Li H T, Chen X K, Deng J, et al. Numerical simulation on the premix properties and explosion process of methane/coal dust mixture in a vertical pipeline under turbulent flow[J]. Journal of China Coal Society, 2018, 43(6): 1769-1779. | |
88 | 陈东梁, 孙金华, 刘义, 等. 甲烷/煤尘复合体系燃烧反应特性研究[J]. 工程热物理学报, 2008, 29(7): 1243-1247. |
Chen D L, Sun J H, Liu Y, et al. Study on combustion characteristics of methane/coal dust mixture[J]. Journal of Engineering Thermophysics, 2008, 29(7): 1243-1247. | |
89 | 陈东梁, 孙金华, 刘义, 等. 甲烷、煤尘复合体系燃烧特性及火焰结构的实验研究[J]. 自然科学进展, 2007, 17(4): 494-499. |
Chen D L, Sun J H, Liu Y, et al. Experimental study on combustion characteristics and flame structure of methane and coal dust composite system[J]. Progress in Natural Science, 2007, 17(4): 494-499. | |
90 | 刘静平, 杨振欣, 赵懿明, 等. 褐煤煤尘爆炸火焰传播特性及燃烧热分解机理研究[J]. 爆破器材, 2022, 51(6): 16-21. |
Liu J P, Yang Z X, Zhao Y M, et al. Study on flame propagation characteristics and combustion pyrolysis mechanism of lignite dust explosion[J]. Explosive Materials, 2022, 51(6): 16-21. | |
91 | Zhang Y, Cao W G, Rao G N, et al. Experiment-based investigations on the variation laws of functional groups on ignition energy of coal dusts[J]. Combustion Science and Technology, 2018, 190(10): 1850-1860. |
92 | 司荣军. 瓦斯煤尘爆炸研究现状及发展趋势[J]. 矿业安全与环保, 2014, 41(1): 72-75, 79. |
Si R J. Research status and development trend of gas and coal dust explosion[J]. Mining Safety & Environmental Protection, 2014, 41(1): 72-75, 79. | |
93 | 邓军, 屈姣, 王秋红. 煤矿瓦斯煤尘燃烧与爆炸研究现状及展望[J]. 煤矿现代化, 2014(5): 96-99. |
Deng J, Qu J, Wang Q H. Research status and development direction in combustion and explosion of gas and coal dust in coal mine[J]. Coal Mine Modernization, 2014(5): 96-99. | |
94 | Li H T, Zhai F E, Li S S, et al. Macromorphological features and formation mechanism of particulate residues from methane/air/coal dust gas-solid two-phase hybrid explosions: an approach for material evidence analysis in accident investigation[J]. Fuel, 2022, 315: 123209. |
95 | Li H T, Deng J, Chen X K, et al. Qualitative and quantitative characterisation for explosion severity and gaseous-solid residues during methane-coal particle hybrid explosions: an approach to estimating the safety degree for underground coal mines[J]. Process Safety and Environmental Protection, 2020, 141: 150-166. |
96 | Garcia-Agreda A, Benedetto A D, Russo P, et al. Dust/gas mixtures explosion regimes[J]. Powder Technology, 2011, 205: 81-86. |
97 | U I, Amosov S D. Combustion modes and mechanisms of high-temperature oxidation of magnesium in oxygen[J]. Combustion, Explosion and Shock Waves, 2004, 40: 275-284. |
98 | 曹泰岳, 张为华, 王宁飞. 轻金属颗粒燃烧理论研究进展[J]. 推进技术, 1996, 17(2): 82-87. |
Cao T Y, Zhang W H, Wang N F. Research progress of light metal particle combustion theory[J]. Journal of Propulsion Technology, 1996, 17(2): 82-87. | |
99 | 孙金华, 卢平, 刘义. 空气中悬浮金属微粒子的燃烧特性[J]. 南京理工大学学报(自然科学版), 2005, 29(5): 582-585, 622. |
Sun J H, Lu P, Liu Y. Combustion behavior of metal particles suspended in air[J]. Journal of Nanjing University of Science and Technology, 2005, 29(5): 582-585, 622. | |
100 | Xiong X, Gao K, Mu J, et al. Study on explosion characteristic parameters and induction mechanism of magnesium powder/hydrogen hybrids[J]. Fuel, 2022, 326: 125077. |
[1] | 张建文, 赵挺生, 万平玉, 王倩琳, 窦站, 徐波. 流程工业一体化安全管控探讨[J]. 化工学报, 2024, 75(6): 2375-2384. |
[2] | 张帅, 喻健良, 丁建飞, 闫兴清. 气流输运工况玉米淀粉爆炸火焰传播与压力特性实验研究[J]. 化工学报, 2024, 75(5): 2072-2080. |
[3] | 常蕊, 邢蕊蕊, 闫学海. 基于非共价化学的绿色生物可循环肽材料[J]. 化工学报, 2024, 75(4): 1317-1332. |
[4] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
[5] | 孙瑞, 田华, 吴子睿, 孙孝存, 舒歌群. 二氧化碳混合工质临界参数计算模型对比研究[J]. 化工学报, 2024, 75(2): 439-449. |
[6] | 吴凡, 彭旭东, 江锦波, 孟祥铠, 梁杨杨. 分子动力学模拟预测天然气密度和黏度的可行性研究[J]. 化工学报, 2024, 75(2): 450-462. |
[7] | 杨克, 贾岳, 纪虹, 邢志祥, 蒋军成. 垃圾焚烧飞灰对瓦斯爆炸压力及火焰传播的抑制作用及机理研究[J]. 化工学报, 2023, 74(8): 3597-3607. |
[8] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[9] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[10] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[11] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[12] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[13] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[14] | 武子超, 汪志雷, 李荣业, 李可昕, 华敏, 潘旭海, 王三明, 蒋军成. 点火方式对欠膨胀氢气射流爆炸超压影响规律研究[J]. 化工学报, 2023, 74(3): 1409-1418. |
[15] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 219
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||