化工学报 ›› 2023, Vol. 74 ›› Issue (7): 3139-3148.DOI: 10.11949/0438-1157.20230365
• 过程安全 • 上一篇
刘晓洋(), 喻健良(
), 侯玉洁, 闫兴清, 张振华, 吕先舒
收稿日期:
2023-04-10
修回日期:
2023-05-18
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
喻健良
作者简介:
刘晓洋(2000—),男,硕士研究生,1329564760@qq.com
基金资助:
Xiaoyang LIU(), Jianliang YU(
), Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU
Received:
2023-04-10
Revised:
2023-05-18
Online:
2023-07-05
Published:
2023-08-31
Contact:
Jianliang YU
摘要:
为探究复杂结构管路中CH4/H2二元燃料混合体系爆轰传播特性,研究了在连续弯管(螺旋结构)扰动作用下,CH4/H2-O2混合物的爆轰失效与重新起爆特征行为,利用光电探测技术和烟迹技术获取了不同氢气比例与初始压力下的火焰传播速度与胞格结构变化规律。实验结果表明,螺旋结构对爆轰波的传播存在抑制作用,爆轰火焰通过螺旋管前后的传播过程可以分为加速、减速、重起爆三个阶段。H2的添加可以有效提高预混气的爆轰敏感性,降低火焰通过螺旋管的速度亏损,当掺氢比超过50%时,减速阶段的速度亏损大幅减小。初始压力的增大同样可以降低火焰的速度亏损,当初压从50 kPa增加到200 kPa,速度亏损减少了40.5%。螺旋管的存在使得重起爆的起爆能量减小,爆轰胞格尺寸增大。
中图分类号:
刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148.
Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane[J]. CIESC Journal, 2023, 74(7): 3139-3148.
编号 | 气体配比 | 掺氢比/% | H2摩尔分数/% |
---|---|---|---|
1 | CH4-2O2 | 0 | 0 |
2 | 3CH4-H2-6.5O2 | 25 | 9.5 |
3 | CH4-H2-2.5O2 | 50 | 22.2 |
4 | CH4-3H2-3.5O2 | 75 | 40.0 |
5 | 2H2-O2 | 100 | 66.7 |
表1 实验气体组分
Table 1 Experimental gas composition
编号 | 气体配比 | 掺氢比/% | H2摩尔分数/% |
---|---|---|---|
1 | CH4-2O2 | 0 | 0 |
2 | 3CH4-H2-6.5O2 | 25 | 9.5 |
3 | CH4-H2-2.5O2 | 50 | 22.2 |
4 | CH4-3H2-3.5O2 | 75 | 40.0 |
5 | 2H2-O2 | 100 | 66.7 |
掺氢比/% | VCJ/(m/s) | 0.8 VCJ位置/mm |
---|---|---|
0 | 2390.2 | 3074.6 |
25 | 2424.0 | 3036.1 |
50 | 2476.9 | 3042.7 |
75 | 2577.0 | 2972.2 |
100 | 2836.3 | 544.4 |
表2 VCJ以及V=0.8VCJ的位置
Table 2 VCJ and the position of V = 0.8VCJ
掺氢比/% | VCJ/(m/s) | 0.8 VCJ位置/mm |
---|---|---|
0 | 2390.2 | 3074.6 |
25 | 2424.0 | 3036.1 |
50 | 2476.9 | 3042.7 |
75 | 2577.0 | 2972.2 |
100 | 2836.3 | 544.4 |
掺氢比/% | C/mm | b |
---|---|---|
0 | 46.87 | 0.39 |
25 | 130.55 | 0.70 |
50 | 81.73 | 0.69 |
100 | 53.47 | 0.65 |
表3 爆轰胞格尺寸λ与初始压力P0之间的拟合关系参数
Table 3 Fitting relationship parameters between detonation cell size λ and initial pressure P0
掺氢比/% | C/mm | b |
---|---|---|
0 | 46.87 | 0.39 |
25 | 130.55 | 0.70 |
50 | 81.73 | 0.69 |
100 | 53.47 | 0.65 |
6 | 宋鹏飞, 单彤文, 李又武, 等. 天然气管道掺入氢气的影响及技术可行性分析[J]. 现代化工, 2020, 40(7): 5-10. |
Song P F, Shan T W, Li Y W, et al. Impact of hydrogen into natural gas grid and technical feasibility analysis[J]. Modern Chemical Industry, 2020, 40(7): 5-10. | |
7 | 郑津洋, 刘自亮, 花争立, 等. 氢安全研究现状及面临的挑战[J]. 安全与环境学报, 2020, 20(1): 106-115. |
Zheng J Y, Liu Z L, Hua Z L, et al. Research status-in-situ and key challenges in hydrogen safety[J]. Journal of Safety and Environment, 2020, 20(1): 106-115. | |
8 | Ma Q J, Zhang Q, Pang L, et al. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air[J]. Journal of Loss Prevention in the Process Industries, 2014, 27: 65-73. |
9 | Yu M G, Zheng K, Zheng L G, et al. Effects of hydrogen addition on propagation characteristics of premixed methane/air flames[J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 1-9. |
10 | Li Y C, Bi M S, Li B, et al. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels[J]. Fuel, 2018, 6(42): 269-282. |
11 | Shen X B, Xiu G L, Wu S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition[J]. Applied Thermal Engineering, 2017, 120: 741-747. |
12 | Chaumeix N, Pichon S, Lafosse F, et al. Role of chemical kinetics on the detonation properties of hydrogen/natural gas/air mixtures[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2216-2226. |
13 | Rudy W, ZbIikowski M, Teodorczyk A. Detonations in hydrogen-methane-air mixtures in semi confined flat channels[J]. Energy, 2016, 116(3): 1479-1483. |
14 | 倪靖, 潘剑锋, 姜超, 等. 掺氢比对甲烷-氧气爆轰特性的影响[J]. 爆炸与冲击, 2020, 40(4): 25-33. |
Ni J, Pan J F, Jiang C, et al. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas[J]. Explosion and Shock Waves, 2020, 40(4): 25-33. | |
1 | 仲冰, 张学秀, 张博, 等. 我国天然气掺氢产业发展研究[J]. 中国工程科学, 2022, 24(3): 100-107. |
Zhong B, Zhang X Y, Zhang B, et al. Industrial development of hydrogen blending in natural gas pipelines in China[J]. Strategic Study of CAE, 2022, 24(3): 100-107. | |
2 | Ilbas M, Crayford A P, Yilmaz I, et al. Laminar-burning velocities of hydrogen-air and hydrogen-methane-air mixtures: an experimental study[J]. International Journal of Hydrogen Energy, 2006, 31(12): 1768-1779. |
3 | 尉庆国, 白小磊, 张红光. 甲烷-氢气-空气预混合气燃烧特性研究[J]. 车辆与动力技术, 2011(4): 12-17. |
Wei Q G, Bai X L, Zhang H G. Combustion characteristics research on methane-hydrogen-air pre-mixture[J]. Vehicle and Power Technology, 2011(4): 12-17. | |
4 | Kozlov V E, Chechet I V, Matveev S G, et al. Modeling study of combustion and pollutant formation in HCCI engine operating on hydrogen rich fuel blends[J]. Internal Journal of Hydrogen Energy, 2016, 41(5): 3689-3700. |
5 | 陈昊, 韩斌, 陈轶嵩, 等. 天然气汽车发展现状及趋势[J]. 中国能源, 2018, 40(2): 36-41. |
Chen H, Han B, Chen Y S, et al. Development status and trend of natural gas vehicles[J]. Energy of China, 2018, 40(2): 36-41. | |
15 | Xiao H H, Duan Q L, Jiang L, et al. Effect of bend on premixed flame dynamics in a closed duct[J]. International Journal of Heat & Mass Transfer, 2015, 88: 297-305. |
16 | Emami S D, Rajabi M, Che R, et al. Experimental study on premixed hydrogen/air and hydrogen-methane/air mixtures explosion in 90 degree bend pipeline[J]. International Journal of Hydrogen Energy, 2013, 38(32): 14115-14120. |
17 | Blanchard R, Arndt D, Gratz R, et al. Explosions in closed pipes containing baffles and 90 degree bends[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2): 253-259. |
18 | 李蒙, 杜扬, 李国庆, 等. 含90°直角弯管结构受限空间油气泄压爆炸实验与大涡模拟研究[J]. 化工学报, 2018, 69(12): 5370-5378. |
Li M, Du Y, Li G Q, et al. Experimental and large eddy simulation study on gasoline-air mixture explosions in semi-confined pipe with 90° right-angle bend[J]. CIESC Journal, 2018, 69(12): 5370-5378. | |
19 | Zhu, C J, Gao Z S, Lin B Q, et al. Flame acceleration in pipes containing bends of different angles[J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 273-279. |
20 | Qiu J W, Jiang B Y, Tang M Y, et al. Effect of different bend pipes on the propagation characteristics of premixed methane-air explosion in confined spaces[J]. Geofluids, 2021, 2021:1-14. |
21 | 杨志, 周凯元, 谢立军, 等. Z型管道中气体火焰传播规律的实验研究[J]. 火灾科学, 2006, 015(3): 114-115. |
Yang Z, Zhou K Y, Xie L J, et al. Experimental study on the law of gas flame propagation in a tube[J]. Fire Safety Science, 2006, 015(3): 114-115. | |
22 | 王昌建, 徐胜利, 郭长铭. 气相爆轰波在半圆形弯管中传播现象的实验研究[J]. 爆炸与冲击, 2003, 23(5): 448-453. |
Wang C J, Xu S L, Guo C M, et al. Experimental investigation on gaseous detonation propagation through a semi-circle bend tube[J]. Explosion and Shock Waves, 2003, 23(5): 448-453. | |
23 | Frolov S M, Aksenov V S, Shamshin I O. Shock wave and detonation propagation through U-bend tubes[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2421-2428. |
24 | Frolov S M, Aksenov V S, Basevich V Y. Initiation of heterogeneous detonation in tubes with coils and Shchelkin spiral[J]. High Temperature, 2006, 44(2): 283-290. |
25 | Zhou B, Sobiesiak A, Quan P. Flame behavior and flame-induced flow in a closed rectangular duct with a 90° bend[J]. International Journal of Thermal Sciences, 2005, 45(5): 457-474. |
26 | Xiao H H, He X C, Wang Q S, et al. Experimental and numerical study of premixed flame propagation in a closed duct with a 90° curved section[J]. International Journal of Heat & Mass Transfer, 2013, 66: 818-822. |
27 | 宋庆学, 陈仁康, 刘健, 等. 弯曲管道内气相爆轰传播特性实验研究[J]. 石油化工安全环保技术, 2017, 33(2): 9-11, 13. |
Song Q X, Chen R K, Liu J, et al. Experimental study on propagation characteristics of gaseous detonation in curved ducts[J]. Petrochemical Safety and Environmental Protection Technology, 2017, 33(2): 9-11, 13. | |
28 | 喻健良, 詹潇兵, 吕先舒, 等. 不同角度分叉管道内氢气-空气爆轰传播特性[J]. 爆炸与冲击, 2022, 42(12): 157-166. |
Yu J L, Zhan X B, Lyu X S, et al. Propagation characteristics of hydrogen-air detonation bifurcated tubes with different angles[J]. Explosion and Shock Waves, 2022, 42(12): 157-166. | |
29 | Mcbride B J, Gordon S. Computer program for calculation of complex chemical equilibrium compositions and applications(Ⅱ): Users manual and program description[R]. Washington, USA: NASA, 1996. |
30 | 李媛, 谭迎新, 丁小勇, 等. 管道直径对瓦斯爆炸压力的影响研究[J]. 中国安全科学学报, 2013, 23(3): 68-72. |
Li Y, Tan Y X, Ding X Y, et al. Effect of pipe diameter on gas explosion pressure[J]. China Safety Science Journal, 2013, 23(3): 68-72. | |
31 | Li C, Kallasanath K. Detonation transmission and transition in channels of different sizes[J]. Proceedings of the Combustion Institute, 2000, 28(1): 603-609. |
32 | Wu Y W, Zheng Q, Weng C S. An experimental study on the detonation transmission behaviours in acetylene-oxygen-argon mixtures[J]. Energy, 2018, 143: 554-561. |
33 | Yuan X Q, Zhou J, Liu S J, et al. Diffraction of cellular detonation wave over a cylindrical convex wall[J]. Acta Astronautica, 2020, 169: 94-107. |
34 | 由博雯, 杨喜港, 洪子金, 等. 氢气影响甲烷爆炸的数值模拟研究[J]. 北京石油化工学院学报, 2022(2): 67-74. |
You B W, Yang X G, Hong Z J, et al. Numerical simulation of hydrogen influence on methane explosion[J]. Journal of Beijing Institute of Petrochemical Technology, 2022(2): 67-74. | |
35 | 孙绪绪. 含有障碍物管道内氢气爆轰传播动力学研究[D]. 合肥: 中国科学技术大学, 2021. |
Sun X X. A dynamics study of hydrogen detonation propagation in obstructed channels[D]. Hefei: University of Science and Technology of China, 2021. | |
36 | Gao Y, Zhang B, Ng H D, et al. An experimental investigation of detonation limits in hydrogen-oxygen-argon mixtures[J]. International Journal of Hydrogen Energy, 2016, 41(14): 6076-6083. |
37 | Hou Y J, Liu X Y, Lv X S, et al. Detonation behaviors of stoichiometric H2-O2 mixture diluted with He, N2, CO2 at different initial pressures[J]. Fuel, 2022, 330: 125555. |
38 | Smith G P, Golden D M, Frenklach M, et al. GRI 3.0[R]. Chicago, IL: Gas Research Institute, 2000. |
39 | Luo C, Zanganeh J, Moghtaderi B. A 3D numerical study of detonation wave propagation in various angled bending tubes[J]. Fire Safety Journal, 2016, 86: 53-64. |
40 | 徐晓峰, 解立峰, 彭金华, 等. 环氧丙烷-空气混合物爆轰波胞格结构的研究[J]. 爆炸与冲击, 2004, 24(2): 158-162. |
Xu X F, Xie L F, Peng J H, et al. Study on the detonation cellular structure of propylene epoxide air[J]. Explosion and Shock Waves, 2004, 24(2): 158-162. | |
41 | 张博, 白春华. 气相爆轰动力学[M]. 北京: 科学出版社, 2012: 104-105. |
Zhang B, Bai C H. Gas Detonation Dynamics[M]. Beijing: Science Press, 2012: 104-105. | |
42 | Gao Y, Ng H D, Lee J H S. Minimum tube diameters for steady propagation of gaseous detonations[J]. Shock Waves, 2014, 24(4): 447-454. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[7] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[8] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[11] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[12] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[13] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[14] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[15] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||