1 |
孟庆超. 化工过程软测量建模方法研究及应用[D]. 北京: 北京化工大学, 2021.
|
|
Meng Q C. Research and application of soft sensing modeling method in chemical process[D]. Beijing: Beijing University of Chemical Technology, 2021.
|
2 |
Liu Y Q, Xie M. Rebooting data-driven soft-sensors in process industries: a review of kernel methods[J]. Journal of Process Control, 2020, 89: 58-73.
|
3 |
黄德先, 江永亨, 金以慧. 炼油工业过程控制的研究现状、问题与展望[J]. 自动化学报, 2017, 43(6): 902-916.
|
|
Huang D X, Jiang Y H, Jin Y H. Present research situation, major bottlenecks, and prospect of refinery industry process control[J]. Acta Automatica Sinica, 2017, 43(6): 902-916.
|
4 |
钱锋, 杜文莉, 钟伟民, 等. 石油和化工行业智能优化制造若干问题及挑战[J]. 自动化学报, 2017, 43(6): 893-901.
|
|
Qian F, Du W L, Zhong W M, et al. Problems and challenges of smart optimization manufacturing in petrochemical industries[J]. Acta Automatica Sinica, 2017, 43(6): 893-901.
|
5 |
Jia M W, Xu D Y, Yang T, et al. Graph convolutional network soft sensor for process quality prediction[J]. Journal of Process Control, 2023, 123: 12-25.
|
6 |
Hasnen S H, Shahid M, Zabiri H, et al. Semi-supervised adaptive PLS soft-sensor with PCA-based drift correction method for online valuation of NO x emission in industrial water-tube boiler[J]. Process Safety and Environmental Protection, 2023, 172: 787-801.
|
7 |
Li Z, Jin H P, Dong S L, et al. Semi-supervised ensemble support vector regression based soft sensor for key quality variable estimation of nonlinear industrial processes with limited labeled data[J]. Chemical Engineering Research and Design, 2022, 179: 510-526.
|
8 |
顾俊发, 许明阳, 马方圆, 等. 基于MIC的支持向量回归及其在化工过程中的应用[J]. 化工学报, 2021, 72(3): 1480-1486.
|
|
Gu J F, Xu M Y, Ma F Y, et al. Support vector regression based on maximal information coefficient and its application in chemical industrial processes[J]. CIESC Journal, 2021, 72(3): 1480-1486.
|
9 |
Shang C, Yang F, Huang D X, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3): 223-233.
|
10 |
Liu Y Q, Yuan J Y, Cai B P, et al. Multi-step and multi-task learning to predict quality-related variables in wastewater treatment processes[J]. Process Safety and Environmental Protection, 2023, 180: 404-416.
|
11 |
Sun K, Huang S H, Wong D S H, et al. Design and application of a variable selection method for multilayer perceptron neural network with LASSO[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(6): 1386-1396.
|
12 |
Wang Y L, Pan Z F, Yuan X F, et al. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network[J]. ISA Transactions, 2020, 96: 457-467.
|
13 |
Yan X F, Wang J, Jiang Q C. Deep relevant representation learning for soft sensing[J]. Information Sciences, 2020, 514: 263-274.
|
14 |
Yuan X F, Zhou J, Huang B, et al. Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 3721-3730.
|
15 |
周乐, 沈程凯, 吴超, 等. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
|
|
Zhou L, Shen C K, Wu C, et al. Deep fusion feature extraction network and its application in chemical process soft sensing[J]. CIESC Journal, 2022, 73(7): 3156-3165.
|
16 |
Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176.
|
17 |
孙凯, 隋璘, 张芳芳, 等. 基于非负绞杀与长短期记忆神经网络的动态软测量算法[J]. 控制理论与应用, 2023, 40(1): 83-93.
|
|
Sun K, Sui L, Zhang F F, et al. Dynamic soft sensor algorithm based on nonnegative garrote and long short-term memory neural network[J]. Control Theory & Applications, 2023, 40(1): 83-93.
|
18 |
常树超, 赵春晖. 一种时空协同的图卷积长短期记忆网络及其工业软测量应用[J]. 控制与决策, 2022, 37(1): 77-86.
|
|
Chang S C, Zhao C H. A spatio-temporal synergistic graph convolution long short-term memory network and its application for industrial soft sensors[J]. Control and Decision, 2022, 37(1): 77-86.
|
19 |
He Y L, Lv S H, Zhu Q X, et al. Novel multiattribute space-based LSTM for industrial soft sensor applications[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 4745-4752.
|
20 |
Zhou J Y, Wang X L, Yang C H, et al. A novel soft sensor modeling approach based on difference-LSTM for complex industrial process[J]. IEEE Transactions on Industrial Informatics, 2022, 18(5): 2955-2964.
|
21 |
李祥宇, 隋璘, 马君霞, 等. 基于时序迁移与双流加权的ONLSTM软测量建模[J]. 化工学报, 2023, 74(11): 4622-4633.
|
|
Li X Y, Sui L, Ma J X, et al. ONLSTM soft sensor modeling based on time series transfer and dual stream weighting[J]. CIESC Journal, 2023, 74(11): 4622-4633.
|
22 |
罗顺桦, 王振雷, 王昕. 基于注意力机制的Multi-head CNN-LSTM软测量建模[J]. 控制工程, 2022, 29(10): 1821-1828.
|
|
Luo S H, Wang Z L, Wang X. Multi-head CNN-LSTM soft sensing modeling based on attention mechanism[J]. Control Engineering of China, 2022, 29(10): 1821-1828.
|
23 |
Ma L W, Zhao Y, Wang B, et al. A multistep sequence-to-sequence model with attention LSTM neural networks for industrial soft sensor application[J]. IEEE Sensors Journal, 2023, 23(10): 10801-10813.
|
24 |
Yuan X F, Li L, Shardt Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4404-4414.
|
25 |
闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报,2023, 74(8): 3407-3418.
|
|
Yan L Q, Wang Z L. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model[J]. CIESC Journal, 2023, 74(8): 3407-3418.
|
26 |
李祥宇, 隋璘, 熊伟丽. 基于自注意力机制与卷积ONLSTM网络的软测量算法[J]. 智能系统学报, 2023, 18(5): 957-965.
|
|
Li X Y, Sui L, Xiong W L. Soft sensor algorithm based on self-attention mechanism and convolutional ONLSTM network[J]. CAAI Transactions on Intelligent Systems, 2023, 18(5): 957-965.
|
27 |
Yuan X F, Huang L F, Ye L J, et al. Quality prediction modeling for industrial processes using multiscale attention-based convolutional neural network[J]. IEEE Transactions on Cybernetics, 2024, 54(5): 2696-2707.
|
28 |
Zhu X L, Hao K R, Xie R M, et al. Soft sensor based on eXtreme gradient boosting and bidirectional converted gates long short-term memory self-attention network[J]. Neurocomputing, 2021, 434: 126-136.
|
29 |
Yu X, Zhang D M, Zhu T Q, et al. Novel hybrid multi-head self-attention and multifractal algorithm for non-stationary time series prediction[J]. Information Sciences, 2022, 613: 541-555.
|
30 |
田永林, 王雨桐, 王建功, 等. 视觉Transformer研究的关键问题: 现状及展望[J]. 自动化学报, 2022, 48(4): 957-979.
|
|
Tian Y L, Wang Y T, Wang J G, et al. Key problems and progress of vision transformers: the state of the art and prospects[J]. Acta Automatica Sinica, 2022, 48(4): 957-979.
|
31 |
Yuan X F, Qi S B, Wang Y L, et al. Quality variable prediction for nonlinear dynamic industrial processes based on temporal convolutional networks[J]. IEEE Sensors Journal, 2021, 21(18): 20493-20503.
|
32 |
Fortuna L, Graziani S, Xibilia M G. Soft sensors for product quality monitoring in debutanizer distillation columns[J]. Control Engineering Practice, 2005, 13(4): 499-508.
|
33 |
齐帅宾. 基于卷积神经网络局部时空特征提取的工业数据软测量[D]. 长沙: 中南大学, 2022.
|
|
Qi S B. Local spatiotemporal feature representation and soft sensors for industrial data based on convolutional neural network[D]. Changsha: Central South University, 2022.
|
34 |
Fortuna L, Rizzo A, Sinatra M, et al. Soft analyzers for a sulfur recovery unit[J]. Control Engineering Practice, 2003, 11(12): 1491-1500.
|